Polar Solution Behaviour of Selenium Tetrabromide

By N. KATSAROS and J. W. GEORGE*

(Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, U.S.A.)

It has been reported¹ that selenium tetrabromide behaves as a partially ionized solute in various polar solvents, but that in dimethylformamide the electron-donor properties of the solvent result in a conductance much higher than expected for a 1:1 electrolyte. Our own observations of these solutions has given somewhat different results. We report our findings for nitrobenzene solutions of SeBr₄ and suggest the identity of the species therein.

Cryoscopic molecular weight determinations in nitrobenzene gave a concentration-independent average value of 212 (formula weight of SeBr₄ is 399). I.r. spectroscopic results were: SeBr₄; 295s, 260m; Se₂Br₂; 290w, 260vs; Se₂Br₂ and Br₂ (1:3 mole ratio); 295s, 260m. The measured molar conductance at 25° of a 1.4×10^{-3} M solution of SeBr₄ was 0.24 ohm⁻¹cm.²mole⁻¹, considerably less than that previously reported.¹ Passage of a stream of dry, purified nitrogen through a PhNO₂ solution of SeBr₄, and discharge of the stream into an aqueous iodide ion-starch solution, gave a pronounced blue colour; blank tests excluded N₂ contaminants and selenium species as oxidants.

The molecular weight results suggest a dissociation of each SeBr₄ formula unit into two particles in solution. Since the molar-conductance value is appreciably below the customary range (20-30)found for 1:1 electrolytes in PhNO₂ it is unlikely that the solution process yields SeBr₃⁺ and Br⁻ ions in any significant concentration. The far i.r. solution spectra of SeBr₄ and Se₂Br₂ plus Br₂ in 1:3 mole ratio were identical, but differed in several ways from the spectrum of crystalline SeBr₄ (298m, 265vs, 247-227vs, 127s, 107s) for which the ionic formulation SeBr+₃Br- has been proposed.² Further, the significant difference in the intensity ratios of the 295 and $260 \text{ cm}.^{-1}$ absorptions for $SeBr_4$ and Se_2Br_2 solutions suggest the presence of another substance, probably SeBr₂. These considerations, together with the implied presence of elementary bromine in the SeBr₄ solution, point to the conclusion that the tetrabromide is dissociated principally to an equilibrium system of SeBr₄, Se₂Br₂, and Br₂. Such behaviour has been postulated for carbon tetrachloride solutions of SeBr₄ from absorption spectrophotometric measurements.³

We thank the National Science Foundation for financial support.

(Received, April 1st, 1968; Com. 403.)

¹ D. A. Couch, P. S. Elmes, J. E. Fergusson, M. L. Greenfield, and C. J. Wilkins, J. Chem. Soc. (A), 1967, 1813.

² J. W. George, K. J. Wynne, and N. Katsaros, Inorg. Chem., 1967, 6, 903.

³ N. W. Tideswell and J. D. McCullough, J. Amer. Chem. Soc., 1956, 78, 3026.