
Metal-Metal Interaction in the π -Cyclopentadienyltricarbonylmolybdenum-Pentacarbonylmanganese Complex, π -C₅H₅Mo(CO)₃-Mn(CO)₅

By B. P. BIR'YUKOV,* YU. T. STRUCHKOV, K. N. ANISIMOV, N. E. KOLOBOVA, and A. S. BESCHASTNOV (Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow)

RECENTLY Hansen and Jacobson determined¹ the crystal structure of π -C₅H₅Fe(CO)₂Mn(CO)₅ (I), which may be envisaged as an adduct of the monomeric forms of $[\pi$ -C₅H₅Fe(CO)₂]₂ (II) and [Mn(CO)₅]₂ (III), with Fe–Mn bond length 2.843 Å. The structure π -C₅H₅Mo(CO)₃Mn(CO)₅ is of interest due to its relationship to two closely analogous compounds, (III) and $[\pi$ -C₅H₅Mo(CO)₃]₂ (IV), the structures of which are known.^{2,3} Thus the primary purpose of the present investigation was to determine the Mo–Mn bond length and to establish the geometry of the molecule.

Crystal data. The red plate-like crystals, elongated along the *c*-axis, are monoclinic. Space group is $P2_1/c$, $a = 14.62 \pm 0.02$, $b = 8.88 \pm 0.01$, $c = 11.62 \pm 0.02$ Å, $\beta = 94 \pm 1^{\circ}$, U = 1510 Å³, $D_{\rm m} = 1.89$, $D_{\rm c} = 1.94$ g. cm.⁻³ for Z = 4, M = 439.9.

The intensities of *ca.* 1100 non-zero independent reflections were estimated visually from Weissenberg diagrams taken with unfiltered Cu-K radiation. An absorption correction was neglected.

The structure was determined by standard heavyatom method and refined by full-matrix leastsquares method with individual isotropic temperature factors. At present stage of refinement the discrepancy index is 0.14, with an overall temperature factor $B = 5.0 \text{ Å}^2$ and the following standard deviations in bond length: Mo-Mn ± 0.01 , Mo-C ± 0.02 , Mn-C ± 0.02 , C-O ± 0.04 Å.

The crystal consists of discrete molecules (see Figure) with the two moities held together solely by an Mo-Mn bond of length 3.08 ± 0.01 Å, which does not differ from the sum of the halved distances Mn-Mn and Mo-Mo in (III) and (IV) (1.462 + 1.611 = 3.073 Å).

The arrangement of the carbonyls about the manganese atom is identical to that found in the structures (III) and (I). The equatorial carbonyl groups of the Mn(CO)₅ fragment have mean bond distances Mn-C 1.78 Å and C-O 1.18 Å, and for the

axial group they are 1.70 Å and 1.20 Å, respectively. This shortening of the axial Mn-C bond has been found in (III) and (I): equatorial Mn--C 1.83 and 1.825 Å, axial Mn-C 1.79 and 1.749 Å, respectively. In the present structure the Mo-Mn- C_{ax} angle has a value 166.6° (the corresponding Fe-Mn- C_{ax} angle in (I) is 168.9°), whereas the Mn-Mn- C_{ax} angle in (III) is 180°.

The environment of the molybdenum atom is the same as that found in the previously studied complexes, containing the fragment π -C₅H₅Mo-(CO)3.3,4 The mean Mo--C(cyclopentadienyl) distance 2.35 Å, Mo-C(carbonyl) 1.98 Å, and C-O 1.16 Å are normal.

(Received, February 26th, 1968; Com. 228.)

- ¹ P. J. Hansen and R. J. Jacobson, *J. Organometallic Chem.*, 1966, **6**, 389. ² L. F. Dahl and R. E. Rundle, *Acta Cryst.*, 1963, **16**, 419. ³ F. C. Wilson and D. P. Shoemaker, *J. Chem. Phys.*, 1957, **27**, 809.

- ⁴ M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1967, 6, 1213.