Metal-Metal Interaction in the π-Cyclopentadienyltricarbonylmolybdenum-Pentacarbonylmanganese Complex, $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3}-\mathrm{Mn}(\mathrm{CO})_{5}$

By B. P. Bir’yukov,* Yu. T. Struchkov, K. N. Anisimov, N. E. Kolobova, and A. S. Beschastnov

(Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow)

Recently Hansen and Jacobson determined ${ }^{1}$ the crystal structure of $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Mn}(\mathrm{CO})_{5}$ (I), which may be envisaged as an adduct of the monomeric forms of $\left[\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ (II) and $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$ (III), with $\mathrm{Fe}-\mathrm{Mn}$ bond length $2 \cdot 843 \AA$. The structure $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ is of interest due to its relationship to two closely analogous compounds, (III) and $\left[\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}(\mathrm{CO})_{3}\right]_{2}$ (IV), the structures of which are known. ${ }^{2,3}$ Thus the primary purpose of the present investigation was to determine the $\mathrm{Mo}-\mathrm{Mn}$ bond length and to establish the geometry of the molecule.

Crystal data. The red plate-like crystals, elongated along the c-axis, are monoclinic. Space group is $P 2_{1} / c, a=14.62 \pm 0.02, b=8.88 \pm 0.01$, $c=11.62 \pm 0.02 \AA, \beta=94 \pm 1^{\circ}, \quad U=1510 \AA^{3}$, $D_{\mathrm{m}}=1.89, \quad D_{\mathrm{c}}=1.94 \mathrm{~g} . \mathrm{cm} .^{-3}$ for $Z=4, \quad M$ $=439.9$.

The intensities of ca. 1100 non-zero independent reflections were estimated visually from Weissenberg diagrams taken with unfiltered $\mathrm{Cu}-K$ radiation. An absorption correction was neglected.

Figure
The structure was determined by standard heavyatom method and refined by full-matrix leastsquares method with individual isotropic temperature factors. At present stage of refinement the
discrepancy index is $0 \cdot 14_{3}$ with an overall temperature factor $B=5 \cdot 0 \AA^{2}$ and the following standard deviations in bond length: Mo-Mn $\pm 0 \cdot 01, \mathrm{Mo}-\mathrm{C} \pm 0.02, \mathrm{Mn}-\mathrm{C} \pm 0.02, \mathrm{C}-\mathrm{O} \pm 0.04 \AA$.
The crystal consists of discrete molecules (see Figure) with the two moities held together solely by an Mo-Mn bond of length $3.08 \pm 0.01 \AA$, which does not differ from the sum of the halved distances $\mathrm{Mn}-\mathrm{Mn}$ and Mo-Mo in (III) and (IV) $(1 \cdot 462+1 \cdot 611=3.073 \AA)$.

The arrangement of the carbonyls about the manganese atom is identical to that found in the structures (III) and (I). The equatorial carbonyl groups of the $\mathrm{Mn}(\mathrm{CO})_{5}$ fragment have mean bond distances $\mathrm{Mn}-\mathrm{C} 1 \cdot 78 \AA$ and $\mathrm{C}-\mathrm{O} 1 \cdot 18 \AA$, and for the
axial group they are $1.70 \AA$ and $1.20 \AA$, respectively. This shortening of the axial $\mathrm{Mn}-\mathrm{C}$ bond has been found in (III) and (I): equatorial $\mathrm{Mn}-\mathrm{C}$ 1.83 and $1.825 \AA$, axial $\mathrm{Mn}-\mathrm{C} 1.79$ and $1.749 \AA$, respectively. In the present structure the $\mathrm{Mo}-\mathrm{Mn}-\mathrm{C}_{a x}$ angle has a value $166 \cdot 6^{\circ}$ (the corresponding $\mathrm{Fe}-\mathrm{Mn}-\mathrm{C}_{a x}$ angle in (I) is 168.9°), whereas the $\mathrm{Mn}-\mathrm{Mn}-\mathrm{C}_{a x}$ angle in (III) is 180°.

The environment of the molybdenum atom is the same as that found in the previously studied complexes, containing the fragment $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Mo}-$ $(\mathrm{CO})_{3}{ }^{3,4}$ The mean Mo-C(cyclopentadienyl) distance $2.35 \AA$, Mo-C(carbonyl) $1.98 \AA$, and $\mathrm{C}-\mathrm{O}$ $1 \cdot 16 \AA$ are normal.
(Received, February 26th, 1968; Com. 228.)

[^0]
[^0]: ${ }^{1}$ P. J. Hansen and R. J. Jacobson, J. Organometallic Chem., 1966, 6, 389.
 ${ }^{2}$ L. F. Dahl and R. E. Rundle, Acta Cryst., 1963, 16, 419.
 ${ }^{3}$ F. C. Wilson and D. P. Shoemaker, J. Chem. Phys., 1957, 27, 809.
 ${ }^{4}$ M. R. Churchill and J. P. Fennessey, Inovg. Chem., 1967, 6, 1213.

