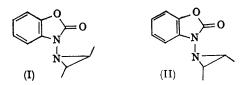
Retarded Rate of Inversion in Aziridines


By R. S. Atkinson[†]

(Department of Chemistry, The University, Leicester)

EARLY work by Bottini and Roberts using n.m.r. demonstrated that the normal inversion rate of trialkyl-substituted nitrogen is considerably retarded in the case of aziridines.¹ The effect of various N-substituents upon the rate of inversion has been studied; substituents able to delocalise the electron pair on nitrogen have an enhancing effect upon this rate.² Severe steric interactions also accelerate the inversion process as in the case of N-t-butylaziridine.³

Recently it has been shown that inversion in N-halogeno-aziridines is slow enough to permit separation of the two invertomers in the cases of N-chloro-2-methylaziridine⁴ and 7-chloro-7-aza-bicyclo[4,1,0]heptane.⁵ Actual observation of coalescence temperatures (T_c) in the n.m.r. spectra of the N-halogeno-aziridines was not possible owing to prior decomposition upon heating but for N-chloro-2,2-dimethylaziridine T_c was believed to be > 180°.⁶

This Communication deals with the recently reported⁷ benzoxazolinone-substituted aziridines (I) and (II) where nitrogen is the hetero-atom bound to the aziridine ring nitrogen and in which there is a larger inversion barrier than in the alkylaziridines. The n.m.r. spectrum of (I) includes two quintets (two overlapping quartets) with J = 5.6 c./sec. centred at δ (CCl₄) ‡ 2.25 and 3.31 corresponding to aziridine ring protons trans and cis to the benzoxazolinone substituent respectively; the methyl signals are doublets at 1.28 and 1.37 (J = 5.6 c./sec.). The difference in chemical shift between protons cis and trans to the benzoxazolinone substituent (Δv) has the value of 62 c./sec. in CCl₄ (48 c./sec. in CDCl₃) at 60 Mc./sec. This abnormally large value is attributed to additional deshielding effects of aromatic ring and carbonyl group in the benzoxazolinone substituent upon the *cis* aziridine ring protons.

For the isochronous⁸ aziridine ring protons in (II) a complex signal is observed from δ (CCl₄) 2.76—3.02; the methyl signals coincide as a doublet at 1.37 (J 5.0 c./sec.).

The reversible change in the n.m.r. spectrum upon heating a solution of (I) in dichlorobenzene is shown in the Figure. With increasing temperature, the gradually broadening and, by 160° ,

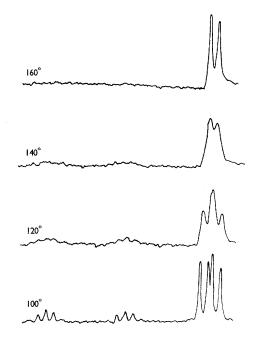


FIGURE. Effect of increasing temperature upon the n.m.r. spectrum of (1) in dichlorobenzene obtained by using a Varian A60. (Aromatic signals omitted.)

vanishing nature§ of the two signals at δ 2.25 and 3.31 is characteristic of the resonance signals from protons moving at an increasing rate between positions of widely separated chemical shift.⁹

No change was observed in the n.m.r. spectrum of (II) up to 180° where the large free energy disparity between the two invertomers involved leads to no manifestation of $T_{\rm c}$ as in (I).⁸

This present case should be compared both with

[†] Present address: Department of Organic Chemistry, The University, Leeds 2.

[‡] In p.p.m. from Me₄Si as internal standard. Spectra run at 100 Mc./sec.

§ At even higher temperatures, the signal from the aziridine ring protons in (I) would be expected to reappear as a quartet at the mean position (δ , 2.78) but this was not experimentally feasible.

that of the diaziridines, where both adjacent nitrogens are within a three-membered ring and in which slow inversion of nitrogen has been demonstrated,¹⁰ and with various N-substituted phosphorus aziridines," where rapid inversion was reported even at -100° but in which a low

operating frequency (20.5 Mc./sec.) would mask a probably low value for Δv .

I thank Professor C. W. Rees for helpful discussions.

(Received, April 8th, 1968; Com. 432.)

¹ A. T. Bottini and J. D. Roberts, J. Amer. Chem. Soc., 1956, 78, 5126.

² F. A. L. Anet and J. M. Osyany, J. Amer. Chem. Soc., 1967, 89, 352; F. A. L. Anet, R. D. Trepka, and D. J. Cram, J. Amer. Chem. Soc., 1967, 89, 357; A. L. Logothetis, J. Org. Chem., 1964, 29, 3049.

³ S. J. Brois, J. Amer. Chem. Soc., 1967, 89, 4242.

⁴ S. J. Brois, J. Amer. Chem. Soc., 1968, 90, 508.

⁵ D. Felix and A. Eschenmoser, Angew. Chem., 1968, 79, 197.

⁶ J. M. Lehn and J. Wagner, Chem. Comm., 1968, 148-see also references to examples of hindered inversion in azetidines, diazetidinones and oxazetidines.

⁷ R. S. Atkinson and C. W. Rees, Chem. Comm., 1967, 1230.

⁸ Y. Shvo, E. C. Taylor, K. Mislow, and M. Raban, *J. Amer. Chem. Soc.*, 1967, 89, 4910. ⁹ For analogous examples in the annulenes see F. Sondheimer *et al.* in "Aromaticity" Special Publ. no. 21, The Chemical Society, London.

¹⁰ A. Mannschreck, R. Radeglia, E. Gründemann, and R. Ohme, Chem. Ber., 1967, 100, 1778. Slow inversion is also observed in the related oxaziridines, W. D. Emmons, J. Amer. Chem. Soc., 1957, 79, 5739.

¹¹ V. F. Bystrov, R. G. Kostyanovskii, O. A. Panshin, A. U. Stepanyants, and O. A. Iuzhakova, Optics and Spectroscopy, 1965, 19, 122.