Photochemical Isomerisation of Dimethyl 1,2-dihydropyridazine-1,2-dicarboxylate

By L. J. Altman*, M. F. Semmelhack, R. B. Hornby, and J. C. Vederas (Department of Chemistry, Stanford University, Stanford, California 94305)

Photochemical valence isomerisations of cyclohexa-1,3-dienes are of interest as a pathway to hexa-1,3,5-trienes and bicyclo[2,2,0]hexenes.¹ We are investigating the photochemistry of 1,2-heterosubstituted cyclohexadienes (I) in order to determine the effect of the heteroatoms on the product distribution. This system is of special interest because one of the expected products, the bicyclo[2,2,0]hexene (II) might provide an approach to free cyclobutadiene.

$$\begin{array}{c|c} X & & & \\ \downarrow & (I) & & & \downarrow \uparrow \\ Y & & \end{array}$$
 (II)

We report here our observations on the photochemical transformations of dimethyl 1,2-dihydropyridazine-1,2-dicarboxylate (III)² which was obtained from dimethyl 1,2,3,6-tetrahydropyridazine-1,2-dicarboxylate³ in 81% yield *via* allylic bromination followed by dehydrobromination.⁴

$$\begin{array}{c|c} NCO_2Me & \text{(i) NBS} \\ NCO_2Me & \text{(ii) 2,6-lutidine} \\ H_2 & \text{NCO}_2Me \\ \hline \\ NCO_2Me & \text{(III)} \\ \hline \\ NCO_2Me & \text{(IV)} \\ \end{array}$$

The proof of structure (III)† follows from its spectral properties‡: n.m.r. 6H (CO_2CH_3) singlet $3.81 \, \delta$, 4H vinyl AA'XX' multiplet, $v_A = 5.71 \, \delta$, $v_X = 6.73 \, \delta$, $|J_{AX} + J_{AX'}|$ 7.7 c./sec.; λ_{max} (EtOH) 296 (ϵ 2900) and its quantitative hydrogenation to (IV) [2.05 moles H_2 uptake/mole (III)], identical to an authentic sample³ (t.l.c.; i.r.).

Upon irradiation in ether (high-pressure mercury arc, $\lambda > 285 \,\mathrm{m}\mu$), (III) was transformed into two photoisomers, which were isolated by preparative t.l.c. in 61 and 14% yield, and a small amount of polymeric material.

$$(III) \xrightarrow{h\nu} \qquad \qquad \prod_{\substack{NCO_2Me \\ NCO_2Me}} \qquad \qquad (V)$$

$$NCO_2Me \qquad \qquad NHCO_2Me \qquad \qquad (VII)$$

$$(VII) \qquad \qquad (VI)$$

The major photoisomer was assigned structure (V)‡ on the basis of its spectral properties: n.m.r. 6H (CO₂CH₃) singlet at 3.81 δ , 4H AA'XX' multiplet, $\nu_A = 5.51\delta$, $\nu_X = 6.74\delta$, $|J_{AX} + J_{AX}|$ 3.6 c./sec.; only end absorption in the u.v. spectrum, ϵ_{210} (EtOH) 4 × 10³; and its conversion by

[†] If the methoxycarbonyl groups are situated in a trans-diaxial arrangement, an examination of the orbital geometry shows that this molecule may be considered a Möbius 4n aromatic system (E. Heilbronner, Tetrahedron Letters, 1964, 1923).

[‡] Śatisfactory microanalytical data were obtained for all new compounds. N.m.r. spectra were determined in CDCl₃ and δ values are in p.p.m. downfield from Me₄Si. § Mass spectra gave parent ions at m/e 198.

di-imide reduction into (VII) [n.m.r. 6H(CO₂CH₃) singlet at 3.81 δ , 2H multiplet at 4.80 δ , and a 4H multiplet at 4.23δ].

The spectral properties of the minor photoisomer are consistent with structure (VI): n.m.r. two 3H (CO_2CH_3) singlets at 3.77 and 3.95 δ and an ABMX pattern, $\nu_{\mathtt{A}} = 6.38\,\delta$ J 0.5 c./sec.; λ_{max} (C₆H₁₂) 275 m μ (ϵ 5700); i.r. (CCl₄) NH absorption at 3380 cm.-1 and CO₂CH₃ absorptions at 1735 and 1745 cm.-1. The formation of (VI) is envisaged as a further photoreaction of (VIII) to give (IX) followed by a rearrangement to (VI).

N.m.r. spectral analysis demonstrated that (VI) was present in the crude photolysis product. Attempts at detecting (VIII) have thus far proved unsuccessful.

(III)
$$h\nu$$
 NCO_2Me $VIII)$
 $h\nu$ CO_2Me NCO_2Me NCO_2Me NCO_2Me NCO_2Me NCO_2Me NCO_2Me

We thank the donors of the Petroleum Research Fund and Eli Lilly and Company for partial support of this work.

(Received, April 16th, 1968; Com. 468.)

- ¹ H. Prinzbach and I. H. Hartenstein, Angew. Chem. Internat. Edn., 1963, 2, 477; E. E. van Tamelen and S. P. Pappas, J. Amer. Chem. Soc., 1963, 85, 3297; G. M. Sanders and E. Havinga, Rec. Trav. chim., 1964, 83, 665; K. Dimroth, Ber., 1937, 70, 1631; E. J. Corey and J. Streith, J. Amer. Chem. Soc., 1964, 86, 950.

 ² J. Rigaudy and J. C. Brelière, Bull. Soc. chim. France, 1968, 455, report that the sole photoisomer of diethyl and the street of the sole photoisomer of diethyl sol. 1964, 1964
- 3,6-diphenyl-1,2-dihydropyridazine-1,2-dicarboxylate is the hexatriene.
- ³ K. Alder and H. Niklas, Annalen, 1954, 585, 81.
- ⁴ We were unable to repeat the observations of M. Rink, S. Mehta, and K. Grabowski, Arch. Pharm., 1959, 292, 225, in their preparation of diethyl 1,2-dihydropyridazine-1,2-dicarboxylate.