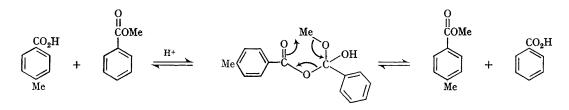

The Mechanism of Ester Acidolysis

By V. D. PARKER and A. W. BAKER

(Research Department, The Dow Chemical Company, Walnut Creek, California)

ACYL-OXYGEN cleavage of the ester function has been reported during the acidolysis of acetyltestosterone. The fact that acetyltestosterone did not change its configuration during reaction with [14C]acetic acid in the presence of HCl was taken as evidence for acyl-oxygen cleavage.¹ We question the validity of this conclusion since retention of configuration is known to occur in $S_N i$ reactions.² If the mechanism of acidolysis involves formation of a tetrahedral intermediate, as commonly occurs in nucleophilic reactions of carboxylic acids,³ a transition state (I) may be written that accounts for retention of configuration. However, this mechanism predicts that alkyl-oxygen cleavage takes place. A tetrahedral intermediate has previously been postulated for the acidolysis of esters,⁴ but the mode of cleavage of the ester function has not been reported.

The data in the Table summarizes results of mass spectrometric analysis of p-toluic acid, 18O-labelled p-toluic acid, methyl p-toluate, and 18O-labelled methyl p-toluate, prepared from the labelled acid. The analysis involved the ratio of the (m + 1) and (m + 2) peaks of the parent ions.


p-toluic acid, the (m + 1): (m + 2) ratio for the resulting methyl p-toluate would be expected to fall halfway between the values for the ¹⁶O ester and the ¹⁸O ester (prepared by reaction of the labelled acid with diazomethane) (Table). On the other hand if alkyl-oxygen cleavage occurs [transition state (I)] this ratio should be very close to that of the [180]ester prepared with diazomethane.

Comparison of mass (m + 1) and (m + 2) peaks from ¹⁸O acid and ester with 160 acid and ester peaks.

Compound	(m + 1: m + 2)	¹⁶ O : ¹⁸ O
¹⁶ O acid ^a	6.44	> 2.16
¹⁸ O acid ^b	2.98	
¹⁶ O ester ^c	5.50	$> 2 \cdot 06$
¹⁸ O ester ^d	2.67	

^a Obtained from Distillation Products Industries, recrystallized from hexane-methylene chloride. b Prepared from p-toluoyl chloride and ^{18}O (1.6%) enriched H2O. ° Prepared from MeOH-H2SO4 treatment of p-toluic acid. ^d Prepared from ¹⁸O containing acid and diazomethane.

When methyl benzoate (5.0 g.) was allowed to react with ¹⁸O-labelled p-toluic acid (1.0 g.) at 170° in the presence of concentrated H₂SO₄ (0·1 g.) for 30 min., methyl p-toluate was isolated from the reaction mixture (about 50% conversion). The ratio of the mass (m + 1): (m + 2) peaks was 2.58, in close agreement with the value of 2.67 (Table) found for the ester prepared with diazomethane. Our results are most consistent with the following mechanism.

If acyl-oxygen cleavage were to occur during the reaction of methyl benzoate with ¹⁸O-labelled

We thank Mr. Dan Sharp and Mrs. Veda Brink for technical assistance.

(Received, April 18th, 1968; Com. 479.).

¹ E. Taschner, C. Wasielewski, C. Kupryszewski, and T. Uminski, Bull. Acad. polon. Sci., Ser. Sci. chim., geol., geog., ¹⁹⁵⁹, 7, 873 (Chem. Abs., 55, 16600a).
² J. Hine, "Physical Organic Chemistry", 2nd edn., McGraw-Hill, New York, 1962, pp. 140-141.
⁸ M. L. Bender, Chem. Rev., 1960, 60, 53.

- ⁴ E. Cherbuliez and M. Fuld, Helv. Chim. Acta, 1952, 35, 1282.