695

The Structure of Kreysiginine (Alkaloid CC-21)

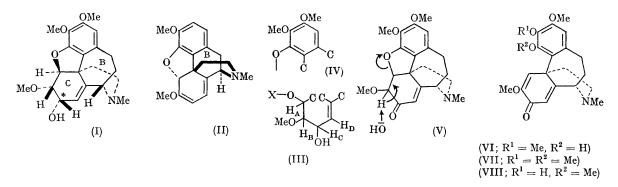
By A. R. BATTERSBY,* M. H. G. MUNRO, R. B. BRADBURY, and F. ŠANTAVÝ

(Robert Robinson Laboratories, University of Liverpool, Liverpool 7;* Swinburne Technical College, Victoria, Australia; and the Chemical Institute, Medical Faculty, Palacky University, Olomouc, Czechoslovakia)

THREE of the major alkaloids from Kreysigiamultiflora Reichb. (Liliaceae) have been proved¹ to be homoaporphines and so to be members of the growing new class² of 1-phenethylisoquinoline alkaloids. The spectroscopic data for kreysiginine, a further alkaloid from this plant,³ clearly showed it to be of a different type. Moreover, kreysiginine has now been found to be structurally identical but enantiomeric with alkaloid CC-21 from Colchicum cornigerum^{4†} (Sweinf.) Täckh. et Drar. (Liliaceae). Our results establish structure (I) for (+)-kreysignine which is a further 1-phenethylisoquinoline derivative and related, as a ring B homologue, to the morphine group of alkaloids [cf. thebaine(II)].

Mass spectrometry supported the molecular formula³ $C_{21}H_{27}NO_5$ for kreysiginine (M^+ 373),

			. .	(0)			
Substance	N–Me	O–Me	-CH _B OMe	-CH _c OR	CH ▲ O	$CH_D = C$	Aromatic
Kreysiginine (I)	7.45	6·51, 6·24, 6·13	$\begin{array}{c} 6{\cdot}81, \ 6{\cdot}78, \\ 6{\cdot}27, \ 6{\cdot}68 \\ J_{\rm AB} \ 9{\cdot}5, \\ J_{\rm BC} \ 4{\cdot}0 \end{array}$	5·81, 5·77, 5·75, 5·71 Јво 4·0, Јср 6·0	5·45, 5·36 Jab 9·5	4·37, 4·31 J _{CD} 6·0	3.86
Couplings demon- strated for above case			<u> </u>	> 		>	
O-Acetylkreysiginine	7.42	6.61, 6.23, 6.11	Obscured by OMe 6·71, 6·68 J _{BC} 4·0	4.59, 4.55, 4.53, 4.53, 4.53, 4.49 $J_{BC} 4.0, J_{CD} 6.0$	5·48, 5·39 Jab 9·5	4·37, 4·31 Јсв 6·0	3 ·85


N.m.r. spectra; τ values (CDCl.)

n.m.r. confirmed the presence of one N-methyl and three O-methyl groups (Table), and i.r. proved the absence of carbonyl groups. A set of coupled signals was present in the 100 Mc./sec. spectrum which established the sequence (III); doubleresonance experiments demonstrated all the spinspin couplings indicated in the Table. Acetylation of kreysiginine proved its nitrogen to be tertiary and the n.m.r. spectrum of the resultant O-acetylkreysiginine $(M^+ 415)$ confirmed sequence (III) by showing the expected downfield shift of the signal assigned to >CHOAc. Kreysiginine shows u.v. absorption corresponding to a 1,2,3-trialkoxybenzene chromophore and it possesses only one aromatic proton; partial structure (IV), or an isomer, is thus indicated. The foregoing functional groups and the molecular formula require kreysiginine to be pentacyclic and one of these rings is assigned to a cyclic ether system involving the oxygen X-O-CH of (III) in accordance with the inert nature of this residue.

When partial structures (III) and (IV) are considered biogenetically, constitution (I) becomes a probable one for kreysiginine; proof of this structure was obtained as follows. Mild Jones

oxidation of kreysiginine afforded dehydro-kreysiginine (V) showing enone absorption (ν_{max} 1690 cm.-1). Treatment of the enone with base opened the oxide bridge yielding a dienone (VI, M^+ 371·1733; C₂₁H₂₅NO₅, 371·1724), v_{max} 1663, 1638, 1613 cm.⁻¹, which was O-methylated with trimethylanilinium hydroxide to generate the ether (VII, M^+ 385·1888; $C_{22}H_{27}NO_5$, 385·1889). This product, $[\alpha]_{D} - 169^{\circ}$ (CHCl₃), was identical by full spectroscopic and chromatographic comparison with O-methylandrocymbine,² $[\alpha]_{D} - 295^{\circ}$ (CHCl₃) of rigorously established structure and absolute configuration (VII). Structure (I) thus represents (+)-krevsiginine with the relative configurations still to be considered. The difference in optical rotation for the product (VII) prepared from androcymbine² (VIII) and from kreysiginine is a reflection of the partial racemic nature of the latter whose $[\alpha]_{\rm D}$ has varied over the range +29 to $+89^{\circ}$ for different batches. Similarly, alkaloid CC-21[†] is a partial racemate with $[\alpha]_{\rm D}$ -42° (CHCl₃) for the only specimen available; this alkaloid thus contains the enantiomer of structure (I) in admixture with some (+)-form.

The large coupling (9.5 c./sec.) between H_{A} and

† Isolation and elucidation of the structures of many other alkaloids from *C. cornigerum* will be described in a joint paper from the Olomouc and Liverpool groups.

 H_B of kreysiginine (see III) requires a trans-diaxial relationship for these protons which is in agreement with the illustrated configurations on a half-chair ring c. The hydroxy-group must then be set axial to account for $J_{\rm BC}$ 4 c./sec. (H_B and H_C in axialequatorial relationship) and this agrees with $J_{
m CD}$ 6.0 c./sec., the dihedral angle $H_c - H_D$ being ca. 30°. Structure (I) is now a compete representation for (+)-krevsiginine.

Retention of oxygen at the starred carbon of ring c (I) for a molecule having an oxide bridge is in contrast to the situation obtaining in the morphine group of alkaloids.⁵ The biosynthetic implications of this observation are being explored by tracer experiments with K. multiflora.

(Received, April 11th, 1968; Com. 449.)

¹ A. R. Battersby, R. B. Bradbury, R. B. Herbert, M. H. G. Munro, and R. Ramage, *Chem. Comm.*, 1967, 450. ² A. R. Battersby, R. B. Herbert, L. Pijewska, and F. Santavý, *Chem. Comm.*, 1965, 228; A. R. Battersby, R. B. Herbert, and F. Santavý, *Chem. Comm.*, 1965, 415; A. R. Battersby, R. B. Herbert, E. McDonald, R. Ramage, and M. K. Kanage, and K. Santavý, *Chem. Comm.*, 1967, 400 (2000). J. H. Clements, Chem. Comm., 1966, 603; A. C. Barker, A. R. Battersby, E. McDonald, R. Ramage, and J. H. Clements, Chem. Comm., 1967, 390.

³G. M. Badger and R. B. Bradbury, J. Chem. Comm., 1960, 445.

⁴ M. Saleh, Š. El-Gangihi, A. El-Hamidi, and F. Šantavý, Coll. Czech. Chem. Comm., 1963, 28, 3413; see also H. Potěšilová, J. Hrbek jun., and F. Šantavý, ibid., 1967, 32, 141.

⁵ A. R. Battersby, Tilden Lecture, Proc. Chem. Soc., 1963, 189; D. H. R. Barton, Hugo Muller Lecture, Proc. Chem. Soc., 1963, 293; D. H. R. Barton, G. W. Kirby, W. Steglich, G. M. Thomas, A. R. Battersby, T. A. Dobson, and H. Ramuz, J. Chem. Soc., 1965, 2423.