The Structure of the Five-co-ordinate Complex, Bromoazido-1,1,7,7-tetraethyldiethylenetriaminecopper(II)

By Zvi Dori
(Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122)

Information concerning the nature of the bonding of the azide group in co-ordination compounds is limited.

I report the crystal structure of the five-co-ordinate complex $\mathrm{Cu}\left(\mathrm{Et}_{4} \mathrm{dien}\right) \mathrm{N}_{3} \mathrm{Br}$, where (Et_{4} dien $=1,1,7,7$-tetraethyldiethylenetriamine, $\mathrm{Et}_{2} \mathrm{~N}^{2} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NH} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NEt}_{2}$).

Dark green, triclinic crystals of bromoazido-1,1,7,7-tetraethyldiethylenetriaminecopper suitable for X-ray work were crystallized from acetonitrile. The unit cell had the dimensions $a=12.95, b=7.65, c=9.87 \AA, \alpha=80.7, \beta=$ $113 \cdot 2, \gamma=100 \cdot 0^{\circ}, Z=2$, space group $P \overline{\mathrm{I}}$. Intensities of 1002 non-zero reflections were estimated visually from equi-inclination Weissenberg photographs using Zr -filtered $\mathrm{Mo}-K_{\alpha}$ radiation. The Cu and Br positions were obtained from a threedimensional Patterson syntheses and the light atoms were placed by successive difference Fourier

syntheses. Least-squares refinement of positional, scale, and thermal parameters was terminated when the shifts in the positional parameters were less than their estimated standard deviation. The final R-factor was $10 \cdot 1 \%$.

A perspective drawing of the co-ordination sphere of the complex is given in the Figure. The geometry around the Cu -atom can be viewed as a distorted trigonal bipyramid with the azide group occupying one of the axial positions of the complex, and with the bromide ion equatorial. The unusual $\mathrm{Cu}-\mathrm{Br}$ distance and the distortion from the trigonal bipyramidal geometry is attributed to non-bonded repulsions and steric hindrance around the Cu -atom. Similar steric factors have been observed in $\mathrm{Co}\left(\mathrm{Et}_{4}\right.$ dien $) \mathrm{Cl}_{2} .{ }^{1}$

Of particular interest are the structural results obtained for the azide group and its mode of co-ordination to the Cu -atom. The structural results for the $\mathrm{Cu}-\mathrm{N}_{3}$ bond angle and the $\mathrm{N}(1)-$ $\mathrm{N}(2)$ and $\mathrm{N}(2)-\mathrm{N}(3)$ bond lengths are different from those obtained for the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{3}\right]^{2+}$ ($124.8^{\circ}, 1.208$ and $\left.1.45 \AA\right)^{2}$ and for the complex $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{9}\left(121 \cdot 4^{\circ}, 1 \cdot 19\right.$ and $1 \cdot 14 \AA$ for the mono co-ordinated azide ${ }^{8}$ but similar to the values obtained for the structure of cyanuric triazide ${ }^{4}\left(114^{\circ}, 1 \cdot 26\right.$ and $1 \cdot 11 \AA$) and methyl azide ${ }^{5}$ ($120^{\circ}, 1.24$ and $1.10 \AA$), which are taken as the values of a covalently-bonded azide. ${ }^{6}$ Thus I conclude that the $\mathrm{Cu}-\mathrm{N}_{3}$ bond is more covalent than the $\mathrm{Co}-\mathrm{N}_{3}$ bond and that in valence-bond structures the dominant resonance forms are $\mathrm{Cu}-\ddot{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=-\overline{\mathrm{N}}$: and $\mathrm{Cu}-\ddot{\mathrm{N}}-\stackrel{+}{\mathrm{N}} \equiv \mathrm{N}$:

It is reasonable to suggest that the differences between the $\mathrm{Co}-\mathrm{N}_{3}$ and $\mathrm{Cu}-\mathrm{N}_{3}$ bond angles and the $\mathrm{N}-\mathrm{N}$ bond lengths could be associated with the nature of the axial position of the trigonal bipyramidal geometry.
(Received, February 20th, 1968; Com. 207.)

Figure

[^0]
[^0]: ${ }^{1}$ Z. Dori, R. Eisenberg, and H. B. Gray, Inorg. Chem., 1967, 6, 438.
 ${ }^{2}$ G. J. Palenik, Acta. Cryst., 1964, 17, 360.
 ${ }^{3}$ I. Agrell, Acta. Chem. Scand., 1966, 20, 1282.
 ${ }^{4}$ I. E. Knaggs, Proc. Roy. Soc., 1935, 150, 576.
 ${ }^{6}$ L. Pauling and L. O. Brockway, J. Amer. Chem. Soc., 1937, 59, 13.
 ${ }^{6}$ L. Pauling, "Nature of the Chemical Bond," Cornell Úniversity Press, Ithica, New York, 1960, p. 272.

