Evidence for a π -Donor Effect in Transition-metal Alkyls from H–D Coupling Constants

By J. D. DUNCAN, J. C. GREEN, M. L. H. GREEN,* and K. A. McLauchlan

(Inorganic and Physical Chemistry Laboratories, South Parks Road, Oxford)

POPLE and BOTHNER-BY have suggested that $J_{\text{H-H}}$ in methyl and methylene derivatives may be interpreted in terms of the σ - and π -effects of the substituents.¹ We have determined $J_{\text{H-D}}$ for some monodeuteriomethyl, CH₂D, and $-C_{6}H_{4}$ -CH₂D derivatives of transition metals. The corresponding values of $J_{\text{H-H}}$ for these compounds are given in the Table. The sign of $J_{\text{H-D}}$ in the CH₂D group from either electron withdrawal from the bonding σ -orbital or by electron donation to the bonding π -orbital. If the values for $J_{\rm H-H}$ of the transition metal methyl compounds are interpreted on this basis, in the cases of complexes where |J| is rather less than 10, such as π -C₅H₅Ni(PPh₃)CH₂D, $|J_{\rm H-H}|$ 7.4 \pm 0.3 c./sec., one must conclude that either the metal is very electronegative (σ -pull) or there is a

Values of J_{H-H} † (calculated from observations on J_{H-D}).

	Solvent			
			<i>ـــــ</i>	
Compound	MeCN	C_6H_6	C_6H_{12}	CS ₂
π -C ₅ H ₅ Ni(PPh ₂)CH ₂ D				∓ 7.9
$\pi - C_{5} H_{5} Fe(CO)_{2} CH_{2} D$	- 8.3	8.6	-8.9	-9.0
$\pi - C_5 H_5 Mo(CO)_3 CH_2 D$	∓ 8.9	∓8.8		$\mp 9 \cdot 1$
$Mn(CO)_5CH_2D$		\mp 9.7		∓ 9.8
π -C ₅ H ₅ W(CO) ₃ CH ₂ D	∓10 ∙0	∓10∙0		± 10.2
BrHgCH ₂ D		∓ 10.3		± 10.3
trans-BrPt(PEt ₃) ₂ CH ₂ D	± 10.0	$\mp 10 \cdot 4$	± 10.8	
$trans-SCNPt(PEt_3)_2CH_2D$		∓ 10.2		
$trans-NO_{3}Pt(PEt_{3})_{2}CH_{2}D$		± 10.2		
$m - [\pi - C_5 H_5 Ni(PPh_3)]C_6 H_4 \cdot CH_2 D$				$\mp 12 \cdot 2$
$p - [\pi - C_5 H_5 Ni(PPh_3)]C_6 H_4 \cdot CH_2 D$				∓11∙9
m-BrC ₆ H ₄ ·CH ₂ D		± 13.7		
<i>p</i> -BrC ₆ H ₄ ·CH ₂ D		∓14·3		

† All values ± 0.3 c./sec.

of the complex π -C₅H₅Fe(CO)₂CH₂D has been determined by ¹³C double resonance. This shows $J_{\text{H-D}}$ to be opposite in sign to $J_{\text{C-H}}$ and therefore to be negative. It is reasonable to assume this to be true for the sign of $J_{\text{H-D}}$ for the other transition metal CH₂D complexes.

 $J_{\text{H-H}}$ is found to be solvent sensitive, changes as large as 0.8 c./sec. being observed. Such large solvent shifts are not found for saturated hydrocarbons though changes of 0.25 c./sec. are found for J_{ab} in MeCHBr·CH_aH_bBr.² It seems likely that the solvent shifts found in this work arise from effects of solvent on the metal, for example co-ordination by the solvent.

Pople and Bothner-By considered the geminal coupling constants for methyl and methylene groups in terms of contributions from molecular orbitals formed from linear combinations of carbon hybrid-orbitals and hydrogen 1s-orbitals. The resulting orbitals have either σ - or π -symmetry. They showed that relative to methane $(J_{\rm H-H} - 12.4 \text{ c./sec.})$ an increase in $J_{\rm gem}$ could result

strong π -donor effect from the metal to the methyl group (or alternatively a combination of the two effects). Evidence from chemical shift data³ suggests that the metal has a positive inductive effect in these low oxidation state carbonyl and π -cyclopentadienyl complexes and is electron donating rather than the reverse. Therefore we feel that the most reasonable explanation of the high $J_{\mathbf{H}-\mathbf{H}}$ values is that there is a strong π -donor effect from the filled metal *d*-orbitals to the methyl group.

Independent support for this suggestion comes from the value for $J_{\text{H-D}}$ in the *m*- and *p*-CH₂D·C₆H₄-NiPPh₃, π -C₅H₅ complexes (Table). The values for the corresponding *m*- and *p*-CH₂D·C₆H₄Br are also given. The values for $J_{\text{H-H}}$ in the nickel derivatives are greater than those of the bromo-compounds (assuming a negative sign) again indicating a metal π -donor effect. This is supported by the observation that the value for the *para*-compound is greater (or not less) than that for the *meta*compound, π -donation being expected to be greater to the para- than to the meta-position, while withdrawal is expected to be less (cf. the values for the bromo-analogues).

It is possible that there may be direct interaction between the filled metal d-orbitals and the 1sorbitals of the methyl hydrogens.⁴ The Pople and Bothner-By treatment is only concerned with the relative contributions of the hydrogen orbitals to bonding and anti-bonding molecular orbitals and does not distinguish between effects caused by interaction of the metal with the carbon p-orbitals or with the hydrogen orbitals themselves. Indeed

both mechanisms are likely to occur in transition metals.

Chemical support for the postulated strong π donor properties of metals in these electron-rich complexes comes from the observation that π -C₅H₅Fe(CO)₂CH₂Cl appears to react to form an intermediate carbene complex $[\pi-C_5H_5Fe(CO)_2-$ CH,]+.3,5

We thank Johnson, Matthey Ltd. for some platinum compounds, the S.R.C. for financial support (to J.D.D.), and Turner and Newall for financial support (to J.C.G.).

(Received, April 29th, 1968; Com. 514.)

- ¹ J. A. Pople and A. A. Bothner-By, J. Chem. Phys., 1965, 42, 1339.
- ² H. Finegold, Proc. Chem. Soc., 1962, 213.
- ³ M. L. H. Green, M. Ishaq, and R. N. Whiteley, J. Chem. Soc. (A), 1967, 5044.
 ⁴ G. E. Coates, M. L. H. Green, and K. Wade, "Organometallic Compounds", Meuthen, London, 1968, vol. 2, p. 216.
 ⁵ P. W. Jolly and R. Pettit, J. Amer. Chem. Soc., 1966, 88, 5044.