Mechanistic Crossover in Substitution Reactions of Acetonitrile-Boron Halide Adducts

By J. R. Blackborow and J. C. Lockhart*
(Department of Inorganic Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU)

We have observed a crossover in mechanism from $S_{\mathrm{N}} 2$ (equation 1) in substitution reactions of acetonitrile-boron trichloride with 2,4-dinitroaniline (DNA) and 2,4-dinitronaphthylamine (DNN) to $S_{\mathrm{N}} \mathrm{l}$ (equation 2 and 3), now demonstrated for the first time, in the corresponding reactions of acetonitrile-boron tribromide. The stoicheiometry of the reaction is given in reaction (1)

$$
\begin{align*}
& \mathrm{MeCN}, \mathrm{BX}_{3}+\mathrm{RNH}_{2} \xrightarrow{\text { slow }} \\
& \mathrm{MeCN}+\mathrm{RNH}, \mathrm{BX}_{2}+\mathrm{HX} \tag{1}\\
& \mathrm{MeCN}, \mathrm{BX}_{3} \text { (soln.) } \stackrel{\text { slow }}{\rightleftharpoons} \\
& \operatorname{MeCN}(l)+\mathrm{BX}_{3}(l) \tag{2}\\
& \mathrm{BX}_{3}+\mathrm{RNH}_{2} \xrightarrow{\text { fast }} \mathrm{RNH}, \mathrm{BX}_{2}+\mathrm{HX} \tag{3}\\
& (\mathrm{X}=\mathrm{Cl}, \mathrm{Br})
\end{align*}
$$

Previous work on similar reactions was discussed in terms of an $S_{\mathrm{N}} 2$ process. ${ }^{1}$ The startling discovery of the rate reversal $\mathrm{Cl}<\mathrm{Br}$ for DNN but $\mathrm{Br}>\mathrm{Cl}$ for DNA, led us to recognise the new mechanism. Our expectation was that for mechanism (1) reactions the $\mathrm{B}-\mathrm{Br}$ bond should break more rapidly than $\mathrm{B}-\mathrm{Cl},{ }^{1}$ while for the process represented in (2) and (3), acetonitrileboron tribromide, the stronger adduct, would
dissociate more slowly. For the reactions discussed here, activation energies and entropies have been obtained and are compared in the Table with the heat of dissociation $\dagger\left(\Delta H_{2}\right)$ for reaction (2). The telling feature of this Table is in the dramatic difference which exists between the bromide system and the chloride system with regard to activation energy: E^{\ddagger} for the chloride system (with both amines) is very much less than the dissociation energy required for reaction (2) $\left(\Delta H_{2}\right)$, so that the associative process (1) is a reasonable mechanism, but not the dissociative (2) $+(3)$. However, for the bromide system (again with both amines) E^{\ddagger} is the same within experimental error as the dissociation energy for reaction (2), which suggests reaction (2) is the ratedetermining step in the overall substitution. The negative entropies of activation ΔS^{\ddagger} for the chloride systems fit the associative ($S_{\mathrm{N}} 2$) interpretation, while the positive entropies for the bromide systems fit the dissociative interpretation. Although in the bromide system DNA is slightly more reactive than DNN (by a factor of merely 2 , despite the difference in $\mathrm{p} K_{\mathrm{BH}+}$ of 2 units 2), the importance of reaction (3) in determining rate is still minor. The relative reactivity $k_{\text {DNA }} / k_{\text {DNN }}$ (about 40) for the chloride system is consistent with the reactive boron entity being a considerably weaker electrophile than that in the bromide system. Since, in solution, ΔH_{2} for chloride and bromide dissociation are the same, within experimental error (Table), free BCl_{3} and BBr_{3} have the
\dagger Estimated from literature, ${ }^{3,4}$ value for $\mathrm{MeCN}^{2} \mathrm{BX}_{3}(c) \longrightarrow \mathrm{MeCN}(l)+\mathrm{BX}_{3}(l)$ using new measurements on heat of solution of crystalline $\mathrm{MeCN}, \mathrm{BX}_{3}$.

Table

	$\Delta H_{2}(\mathrm{kcal} . / \mathrm{mole})$	$\begin{gathered} \mathrm{MeCN}, \mathrm{BCl}_{3} \\ 18 \cdot 1 \pm 0.4 \end{gathered}$	$\begin{gathered} \mathrm{MeCN}, \mathrm{BBr}_{3} \\ 19 \cdot 6 \pm 1 \cdot 3 \end{gathered}$
DNA	k^{*} (min. ${ }^{-1}$)	$0 \cdot 80$	$0 \cdot 11$
	$E \ddagger(\mathrm{kcal} . / \mathrm{mole})$	10 ± 2	20 ± 2
	$\Delta S \ddagger\left(25^{\circ}\right)($ e.u. $)$	-18 ± 5	10 ± 5
DNN	$k^{*}\left(\right.$ min. ${ }^{-1}$)	0.018	$0 \cdot 058$
	$E \ddagger(\mathrm{kcal} . / \mathrm{mole})$	10 ± 2	21 ± 2
	$\Delta S \ddagger\left(25^{\circ}\right)$ (e.u.)	-27 ± 5	$12 \cdot 5 \pm 5$

* The rate constants k are pseudo first-order, extrapolated to 25° and $\left[\mathrm{MeCN}, \mathrm{BX}_{3}\right]=5 \times 10^{-2} \mathrm{M}$, and refer to rate of disappearance of amine.
same acceptor strength; the rate reversal mentioned already is not explicable if both mechanisms are $S_{N} l$, but is consistent with free BBr_{3} and complexed BCl_{3} as the substrates attacked by amine i.e. equation (1) is the mechanism for BCl_{3} and equation (2) $+(3)$ for BBr_{3} systems.

Isosbestic points as in the earlier work ${ }^{1}$ rule out any massive ($>5 \%$) accumulation of an intermediate between RNH_{2} and RNHBX_{2}.

We thank the S.R.C. for financial support.
(Received, April 29th, 1968; Com. 515.)
${ }^{1}$ J. C. Lockhart, J. Chem. Soc. (A), 1966, 809.
${ }^{2}$ J. C. Lockhart,, J. Chem. Soc., 1962, 3737.
${ }^{3}$ J. M. Miller and M. Onyszchuk, Canad. J. Chem., 1965, 43, 1877.
${ }^{4}$ A. W. Laubengayer and D. S. Sears, J. Amer. Chem. Soc., 1945, 67, 164.

