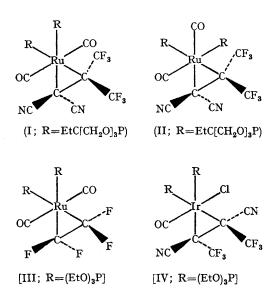
The Mechanism of the Reaction of Low-valent Metal Complexes with Electrophilic Olefins

By M. COOKE, M. GREEN,* and D. C. WOOD

(Department of Inorganic Chemistry, University of Bristol, Bristol, 8)

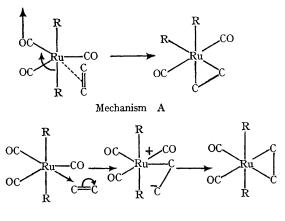
THE isoelectronic compounds, tetrafluoroethylene,^{1,2} tetracyanoethylene,^{3,4} hexafluoroacetone,⁵ and carbon disulphide⁶ have been shown to form complexes with low-valent transition-metal complexes. If a valence-bond description is adopted, the bonding in these complexes may be depicted as involving the metal atom in a three-membered σ -bonded ring framework. Recently, the stereochemistry^{4,6,7} of these complexes has received attention, but little is known about the related topic of the mechanism of formation of these complexes.


The ruthenium(0) complex trans-{EtC[CH₂O]₃-P}₂Ru(CO)₃ reacts very rapidly at room temperature with 1,1-dicyano-2,2-bis(trifluoromethyl)ethylene to form (I). The i.r. spectrum of (I) showed a single terminal carbonyl band at 2061 vs cm.⁻¹ (CH₂Cl₂) and the ¹H n.m.r. spectrum showed the (POCH₂) protons as a doublet ($J_{\rm HP}$ 4·5 c./sec.) centred at τ 5·70, which establishes the illustrated stereochemistry. The ¹⁹F n.m.r. spectrum[†] containing a doublet ($J_{\rm PP}$ 5·8 c./sec.) at 54·4 p.p.m. confirming the structural assignment. The crystalline solid (I) isomerises in solution $[t_{2} \ 6 \ min.$ (MeCN), $t_{2} \ 30 \ min.$ ($C_{6}H_{6}$)] to form (II) with i.r. bands 2041 vs and 1938 vs cm.⁻¹ (CH₂Cl₂); the ¹H and ¹⁹F n.m.r. spectra had bands at 5.63 (d, POCH₂, $J_{\rm HP} \ 4.5 \ c./sec.$) and 5.70 τ (d, POCH₂, $J_{\rm HP} \ 4.5 \ c./sec.$); and a doublet ($J_{\rm PF} \ 5.8 \ c./sec.$) centred at 54.4 p.p.m., respectively.

Tetrafluoroethylene reacts with trans-[(C_2H_5O)₃-P]₂Ru(CO)₃ to afford (III) m.p. 59°. ν_{co} 2019 vs cm.⁻¹ (hexane) with ¹H n.m.r. bands at τ 6·30 (quint., POCH₂CH₃, J_{HP} 7·0 c./sec., J_{HH} 7·0 c./sec.), 8·72 (t, POCH₂CH₃, J_{HH} 7·0 c./sec.), and a ¹⁹F n.m.r. band at 114·2 p.p.m. (typical X-resonance of an X₂AA'X₂' system).¹

The isolation of (I), (II), and (III) is of general interest in that these are the first examples of ruthenium fluoro-olefin complexes, moreover, the n.m.r. data provides support for the rigid σ -bonded structures illustrated *i.e.* the compounds are formally Ru^{II} complexes. However, the stereochemistry of (I), (II) and (III) is in striking

† The solvent used for the ¹⁹F n.m.r. spectral work was CFCl₃.


contrast with that observed in the formally related[‡] reaction of trans-(Ph₃P)₂Ru(CO)₃⁸ or trans-(Ph₂PMe)₂Ru(CO)₃^{8,9} with iodine, when cisaddition of iodine occurs and the phosphines retain their relative trans-configuration.

In order to accommodate this difference in stereochemistry it is suggested, that in the reaction of $(CF_3)_2C = C(CN)_2$, C_2F_4 and other electrophilic olefins with ruthenium(0) complexes, the olefin approaches the metal broadside-on as depicted (mechanism A), rather than end-on (mechanism B) where reaction involves nucleophilic attack by the metal on the electrophilic olefin.

Further evidence for the reaction proceeding via direct co-ordination of the olefin to the metal was provided by studying the reaction of trans-(Ph₃P)₂IrCO·Cl with trans-1,2-dicyano-1,2-bis(trifluoromethyl)ethylene.10 The reaction is stereospecific leading to the formation of (IV) m.p. 267-268°, v_{co} 2041 vs cm.⁻¹ (Nujol). The ¹⁹F

n.m.r. spectrum showed two bands at 53.8 p.p.m. (d, J_{PF} 11.7) and 58.0 p.p.m. (d, J_{PF} 9.3 c./sec.). Since vicinal inequivalent CF₃ groups only show¹⁰ F-F coupling when in a relative *cis*-configuration, no change in configuration of the olefin occurs on

Mechanism B

complexing to iridium. The stereospecificity of this reaction implies that ionic intermediates of the kind depicted in mechanism B are not involved. A study of the rate of reaction of trans-(Ph₃P)-IrCO·Cl with trans-CF₃(CN)·C=C(CN)·CF₃ in different solvents confirms this point. The reaction in nitromethane proceeds at a rate only twice as fast as in methylene chloride. If an ionic intermediate was involved a large rate difference would be expected.10

These experiments clearly suggest that in the reaction of low-valent metal species with electrophilic olefins, weak σ -donor interaction occurs followed by developing overlap between the metal *d*-orbitals and the olefinic π -antibonding orbitals.

(Received, April 8th, 1968; Com. 430.)

 \ddagger The reaction of electrophilic olefins with $P_2Ru(CO)_3$ systems may be thought of as an oxidative-elimination reaction.

¹M. Green, R. B. L. Osborn, A. J. Rest, and F. G. A. Stone, Chem. Comm., 1966, 502; M. Green, R. B. L. Osborn, A. J. Rest, and F. G. A. Stone, J. Chem. Soc. (A), 1968, in the press.

- ¹ G. W. Parshall and F. N. Jones, J. Amer. Chem. Soc., 1965, 87, 5356.
 ³ W. H. Baddley, J. Amer. Chem. Soc., 1966, 88, 4545.
 ⁴ W. H. Baddley, C. Panattoni, G. Bombieri, and U. Belluco, J. Amer. Chem. Soc., 1968, 90, 798.
- ⁶ B. Clarke, M. Green, R. B. L. Osborn, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 167.
- ⁶ M. Baird, G. Hartnell, R. Mason, A. I. M. Rae, and G. Wilkinson, Chem. Comm., 1967, 92.
- ⁷ J. A. McGinnety and J. A. Ibers, Chem. Comm., 1968, 235.
 ⁸ J. P. Collman and W. R. Roper, J. Amer. Chem. Soc., 1965, 87, 4008.
- ⁹ R. Burt, M. Cooke, and M. Green, unpublished work.
- ¹⁰ S. Proskow, H. E. Simmons, and T. L. Cairns, J. Amer. Chem. Soc., 1966, 88, 5254.