Carbon-Phosphorus Coupling in Representative Organophosphorus Compounds[†]

By G. MAVEL

(IRCHA, 12 Quai Henri IV, Paris 4^e)

and M. J. GREEN*

(Perkin-Elmer Limited, Beaconsfield, Buckinghamshire)

For experimental support for the molecularorbital treatment of spin-spin couplings developed by Pople and Santry¹ and others,² the measurement of couplings involving nuclei other than protons is especially important. ¹³C-Couplings to itself³ and to 15N, 77Se, 119Sn, 125Te, 207Pb, 4 29Si, and 119Hg, 5 and ³¹P-couplings to ¹¹B⁶ and ²⁹Si⁷ have been reported. In addition, some values of ¹³C-³¹P coupling constants have recently been presented. McFarlane has reported⁸ "heteronuclear tickling" experiments on Me₂PPh and Me₂P+HPh, giving for the methyl ${}^{13}C{}^{-31}P$ couplings -14 and +56 (± 1) Hz respectively, and Manatt and Elleman have obtained a value of 13.97 Hz for Me₈P¹⁰ by using Overhauser-effect enhancement on ³¹P spectra. Finer and Harris¹¹ have estimated $I(^{13}C-P-^{31}P)$ for tetramethyldiphosphine.

To enlarge the basis for future discussion, we present here more data on ¹³C-³¹P couplings obtained by the direct observation of ¹³C spectra. The spectra of neat samples of representative (nonenriched) compounds were recorded in the absorption mode on a Perkin-Elmer R10 spectrometer operating at 15·1 MHz, using spectrum accumulation for sensitivity enhancement. From our tabulated results, one can appreciate qualitatively the influence on the n.m.r. parameters of the following effects:

Phosphorus hybridization: nearly p^3 in $(CH_3)_3P$; probably with a significant *s*-content in CH_3PCl_2 and nearly sp^3 in thiophosphorylated and especially phosphorylated compounds.

Carbon hybridization: sp^3 in compounds 1 to 5, sp in compound 6^+_1 .

† "Etude par RMN de composés organo-phosphorés". Part XVII-Part XVII: ref. 14.

[†] Owing to the superimposition of vinylic and aromatic patterns in $(PhO)_2P(O) CH=CH_2$, we have failed to obtain similar data for a molecule with an sp^2 carbon.

	Compound	$J(^{13}C-^{31}P)$	J(¹³ C– ¹ H)	δ(¹³ C)
1.	MePCl ₂	45	133 ^b	113.5
2 .	$MeP(S)Cl_2$	81	135 ^b	87.5
3.	$MeP(O)Cl_2$	104	135 ^b	97.0
4.	$MeP(O)F_2^{c}$	147	133 ^b	107.0
5.	$(EtO)_2 P(O)C^*H_2COMe^d$	127	ca. 130	85.5
6.	$(EtO)_2 P(O)C^* \equiv CMe^d$	304		57.0
	$(EtO)_2 P(O)C \equiv C^*Me^e$	54	_	28.0

TABLE⁸

^a For the starred carbon, when indicated. Couplings in Hz (± 2); chemical shifts in p.p.m. (± 0.5), measured upfield from benzene.

^b From ¹³C proton satellite spectra (G. Mavel and G. Martin, Compt. Rend., 1963, 257, 1730), one obtains respectively 131, 135, 134 and 132 Hz.

^e ¹³C–C–¹H coupling ca. 10 Hz.

The nature of substituents on carbon or phosphorus.

 $J(^{13}C-^{31}P)$ values may be rationalized in terms of the s-character of P-C bonds by using the Walsh rule,¹² that the s-character of a phosphorus atom tends to concentrate in bonds with the more electropositive groups, and on the basis of a qualitative extension of the Pople and Santry theory:13 the coupling constant depends on the energies of the s-electrons of the coupled nuclei (taken as approximately constant for all P-C groups) and on the resonance integral between their outer-shell s-electrons.

We have assumed, on the basis of McFarlane's results,⁸ that all our measured couplings are positive, the general trend for ¹³C-³¹P couplings then paralleling that predicted for ³¹P-³¹P ones¹³ as s-character varies. Another interesting feature is the relationship of ¹³C-³¹P couplings for all the available methyl derivatives to the relevant ¹H-³¹P couplings, the sign and value of which have been discussed recently.¹⁴ Clear trends appear for

 P^{III} , P^{IV} , and P^{V} (see Figure) indicating that the same main factors contribute to both of these

FIGURE

couplings, especially when anomalous signs appear¹² (positive for two-bonds ¹H-³¹P, negative for onebond ¹³C-³¹P), which may be due to the influence of the phosphorus lone-pair.14

(Received, April 29th, 1968; Com. 513.)

- ¹ J. A. Pople and D. P. Santry, *Mol. Phys.*, 1964, 8, 1; 1965, 9, 311. ² J. N. Murrell, P. E. Stevenson and G. T. Jones, *Mol. Phys.*, 1967, 12, 265, and references therein.
- ³ K. A. McLauchlan, Chem. Comm., 1965, 105; D. M. Grant, J. Amer. Chem. Soc., 1967, 89, 2228.
 ⁴ W. McFarlane, Mol. Phys., 1966, 10, 603; 1967, 12, 243; 1967, 13, 587; J. Chem. Soc. (A), 1967, 528.
- ⁵ R. R. Dean and W. McFarlane, Mol. Phys., 1967, **2**, 289, and 364; 1967, **13**, 343; K. A. McLauchlan, D. H. Whiffen, and L. W. Reeves, ibid., 1966, 10, 12.

⁶ E. F. Mooney and B. S. Thornhill, J. Inorg. Nuclear Chem., 1966, 28, 2225, J. W. Gilje, K. W. Morse, and R. W. Parry, Inorg. Chem., 1967, 6, 1761. ⁷ E. A. V. Ebsworth and G. M. Sheldrick, Trans. Faraday. Soc., 1966, 62, 3282. ⁸ W. McFarlane, Chem. Comm., 1967, 58.

- ¹⁰ D. D. Elleman, S. L. Manatt, A. J. A. Bourn, and A. H. Cowley, J. Amer. Chem. Soc., 1967, 89, 4544.
 ¹⁰ D. D. Elleman and S. L. Manatt, Comm. 8th Expl. NMR Conf., Pittsburgh, March 3rd, 1967.
 ¹¹ E. G. Finer and R. K. Harris, Mol. Phys., 1967, 13, 65.
 ¹² G. Mavel, Progr. N.M.R. Spectroscopy, 1966, 1, 251.
 ¹³ F. O. B. D. B. H. H. H. Sin Chem. 2010 (1990)

- ¹³ E. G. Finer and R. K. Harris, Chem. Comm., 1968, 110.
- ¹⁴ G. Mavel, J. Chim. phys., to be published.

^{c 13}C⁻¹⁹F coupling ca. 22 Hz. ^d No ¹³C⁻³¹P coupling noticeable for POEt groups.