Charge-transfer Interaction in Triplet Quenching of Naphthalenes in Solution

By S. ANDER, H. BLUME, G. HEINRICH, and D. SCHULTE-FROHLINDE*

(Institut für Strahlenchemie, Kernforschungszentrum Karlsruhe, 75 Karlsruhe, Germany)

USING flash-photolysis techniques we have established the influence of charge-transfer interactions on the decay rates of triplet states of naphthalenes in the presence of quenchers (Reaction 1).

$$^{3}M^{*} + Q \xrightarrow{k_{T}}$$
 no triplet-triplet absorption (1)
 k_{S}

$$^{1}M^{*} + Q \longrightarrow \text{no fluorescence}$$
 (2)

Low $k_{\rm T}$ -values are found if emitter and quencher both have electron-acceptor or donor properties (e.g. CCl₄ + cyanonaphthalene or diethylamine + methoxynaphthalene) (Table). However, large $k_{\rm T}$ -values are obtained if emitter and quencher have opposite acceptor-donor properties (e.g. CCl₄ + methoxynaphthalene). From this we conclude that in the rate-determining step of the tripletquenching in these cases charge-transfer interaction is involved.

For comparison the corresponding values for fluorescence quenching (Reaction 2) are also given in the Table.¹ In the case of CCl₄ the ratio of the rate constants of singlet and triplet quenching $k_{\rm s}/k_{\rm T}$ does not depend on substitution. This suggests a similar influence of CCl₄ on both states with respect to quenching **by** charge-transfer interaction.

The rate constants of triplet quenching compared with those of singlet quenching are significantly smaller. This is true not only for CCl_4 but also for diethylamine as quencher.

Table

Rate constants of singlet and triplet quenching of substituted naphthalenes with CCl_4 and $NHEt_2$ as quenchers. Experimental details: 25°, Conc. of naphthalenes $1\cdot 2 - 4\cdot 1 \times 10^{-4}M$, conc. of quenchers $0 - 5 \times 10^{-2}M$ in the case of triplet quenching and up to 1M in singlet-quenching, oxygen free by the freeze pump method, flashpower ~ 250 J, filter UG 11 Schott and Gen. Mainz $1\cdot 5$ mm. and filter solution containing n-hexane and s-butylbromide.

	CCl ₄ (in cyclohexane)		
	$k_{ m S}$ l./mole.sec.	k_{T} l./mole.sec.	$k_{ m S}/k_{ m T}$
l-Methoxynaphthalene Naphthalene l-Cyanonaphthalene	$rac{1\cdot 3 imes 10^{10} \pm 50\%}{2\cdot 3 imes 10^8 1\cdot 3 imes 10^7}$	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	${ 3\cdot 3 imes 10^4 \ 2\cdot 6 imes 10^4 \ 1\cdot 9 imes 10^4 }$
1-cyanonapitenaicite	\mathbf{NHEt}_2 (in methanol)	· ~ 10 ± 5/6	10 / 10
	k_{s} l./mol.sec.	$k_{\mathbf{T}}$ l./mol.sec	$k_{\rm S}/k_{\rm T}$
l-Methoxynaphthalene Naphthalene	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} 2{\cdot}3 \ imes \ 10^4 \ 2{\cdot}6 \ imes \ 10^5 \end{array}$	$egin{array}{cccc} 2{\cdot}5 imes 10^3 \ 0{\cdot}58 imes 10^3 \end{array}$
1-Cyanonaphthalene	$2{\cdot}8~ imes~10^{9}$	$1\cdot 6 \times 10^5$	$1.8 imes10^4$

(Received, April 29th, 1968; Com. 517.)

¹ D. Schulte-Frohlinde and R. Pfefferkorn, Ber. Bunsengesellschaft Phys. Chem., 1968, in the press.