CHEMICAL COMMUNICATIONS, 1968

The Sign and Magnitude of the ⁷⁷Se-¹⁹⁵Pt Coupling Constant

By W. McFarlane

(Chemistry Department, Sir John Cass College, Jewry Street, London, E.C.3)

THERE is evidence that reduced spin-spin coupling constants between directly bound nuclei are positive unless an electronegative element is involved. Thus the C-H, Si-H, and P-H coupling constants are positive, whereas the corresponding ones involving fluorine instead of hydrogen are negative.¹ The P-C coupling constant may have either sign according to the valence of phosphorus,² and the Se-H and Se-C ones are positive and negative respectively.3 Since selenium is intermediate in electronegativity between phosphorus and fluorine it is important to know the sign and magnitude of its coupling constant with other nuclei, and platinum is useful in this respect since its electronegativity lies between those of hydrogen and carbon.

The ¹H n.m.r. spectra of saturated solutions of cis- and trans-(Me₂Se)₂PtCl₂ in methylene dichloride have satellite lines due to the isotopes ⁷⁷Se $(I = \frac{1}{2}, \text{ abundance } 7.5\%)$ and ¹⁹⁵Pt $(I = \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ abundance 33.7%), and it was also possible to observe some of the lines from the doubly substituted species (Me₂Se¹⁹⁵Pt⁷⁷SeMe₂)Cl₂. Observation of these, and simultaneous irradiation at either the ⁷⁷Se or the ¹⁹⁵Pt resonant frequency, gave the magnitude of ${}^{1}J({}^{77}\text{Se}-{}^{195}\text{Pt})$ and its sign relative to ${}^{3}J({}^{195}\text{Pt}\cdots\text{H})$ and ${}^{2}J({}^{77}\text{Se}\cdots\text{H})$. Since ${}^{3}/({}^{195}\text{Pt}\cdots\text{H})$ is of similar size and has been shown to be positive⁴ in analogous phosphine complexes of platinum(II) we assume this is also true in the selenium compounds. This is then consistent with a positive value for ${}^{2}/({}^{77}\text{Se}\cdots\text{H})$, as is found³ in Me₂Se and Me₃Se⁺.

The chemical shifts given in the Table were

The Se-Pt reduced coupling constant is thus positive, but is rather small by comparison with the analogous P-Pt reduced coupling constants (ca. +3400 and +2300 \times 10⁻²⁰ cm.⁻³ in cis- and trans-isomers). Selenium is a third row element, so use of the expression developed⁵ for the Fermi contact contribution to Pt-P coupling constants would lead to a larger value for K(Pt-Se). However, it is doubtful whether the use of a mean excitation energy can be justified in either case, and the error will be greatest for selenium. The Fermi contact contribution can be negative in extreme cases.⁶ The ratio K_{cis} : K_{trans} is about 1.3 for the selenium compounds and 1.5 for analogous phosphorus ones. This is probably due to variations in α_{Pt}^2 , since ${}^2J({}^{77}Se \cdots H)$ and ${}^{2}J({}^{31}P\cdots H)$ differ little between the *cis*- and trans-isomers.

An alternative explanation of the smaller cis: trans coupling constant ratio is that there is less $d\pi - d\pi$ bonding in the selenium compounds, but this concept has been questioned recently.^{5,7} It has been demonstrated however, that if bonding is important its contribution is positive.⁴ so the change is in the expected direction. The chemical shifts do not conflict with this interpretation.

TABLE.	N.m.r.	barameters	for	(Me.Se) PtCL	in	<i>c.</i> ,	lsec.
INDEE.	1	purumeters	101	1110200/21 0012	010	0.1	300.

		cis	trans
¹ <i>J</i> (¹⁹⁵ Pt– ⁷⁷ Se)	••	 $+480 \pm 20$	$+$ 365 \pm 4
$^{1}K(\text{Pt-Se})$.		 $+$ 959 \times 10 ⁻²⁰ cm. ⁻³	$+745 \times 10^{-20}$ cm. ⁻³
$^{2}J(^{77}\text{Se}\cdot\cdot\cdot\text{H})$		 $+10.0\pm0.2$	$+ 9.5 \pm 0.2$
${}^{3}J({}^{195}\mathrm{Pt}\cdots\mathrm{H})$		 $+$ 41·8 \pm 0·2	$+36.6 \pm 0.2$
Ξ(¹⁹⁵ Pt)	••	 $21,417,185 \pm 10$	$21,422,128 \pm 3$
Ξ(⁷⁷ Se)		 19,073,818 \pm 3	$19,074,102 \pm 1$

obtained by observation of the singly isotopically substituted species, and are quoted in the form Ξ = the resonant frequency appropriate to a polarizing magnetic field of strength such that tetramethylsilane would give an ¹H resonance at 100 Mc./sec. The results for the *trans*-isomer are more precise than for the cis-isomer because of the lower solubility of the latter.

I thank Dr. D. H. Whiffen for advice, the Director of the National Physical Laboratory for the use of n.m.r. facilities in the Division of Molecular Science, and Johnson, Matthey & Co., Ltd., for the loan of platinum.

(Received, April 26th, 1968; Com. 512.)

- ² W. McFarlane, Chem. Comm., 1967, 58.
- ⁸ W. McFarlane, Chem. Comm., 1967, 963; Mol. Phys., 1967, 12, 243.
- ⁴ W. McFarlane, J. Chem. Soc. (A), 1967, 1922.
 ⁵ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.
 ⁶ J. A. Pople and D. P. Santry, Mol. Phys., 1964, 8, 1.
- ⁷ L. M. Venanzi, Chem. in Britain, 1968, 4, 162.

¹ E. L. Mackor and C. MacLean, J. Chem. Phys., 1965, 42, 4254; W. McFarlane, J. Chem. Soc. (A), 1967, 1148, 1275; S. L. Danyluk, J. Amer. Chem. Soc., 1964, 86, 4504; R. R. Dean and W. McFarlane, Chem. Comm., 1967, 840.