Hindered Amines in Peptide Synthesis. Synthesis of 7-Glycine-oxytocin

By MIKLOS BODANSKY* and RAYMOND J. BATH

(Department of Chemistry, Case Western Reserve University, Cleveland, Ohio)

OUR main purpose was to test the applicability of a hindered amine in peptide synthesis. Removal of amino-protecting groups usually results in a salt of the N-deprotected peptide. For the subsequent acylation the amino-group is set free by addition of a tertiary amine, the nature of which affects the extent of racemization during acylation,^{1,2} but Bodanszky and Bodanszky³ have shown that racemization via azlactones can be only prevented by extreme steric hindrance in the tertiary amine (e.g. tribenzylamine). A lesser hindrance such as in ethyldi-isopropylamine was almost without effect, but this base efficiently protects against loss of optical purity when racemization proceeds through β -elimination. In entirely stepwise syntheses^{4,5} with amino-acids carrying urethan-type protecting groups, no azlactone intermediates can be expected, but racemization through β -elimination still has to be considered, especially if the sequence to be synthesized contains serine or cysteine residues. In preliminary experiments, ethyldi-isopropylamine was more promising than tribenzylamine, and its applicability to the synthesis of 7-glycineoxytocin was tested.

7-Glycine-oxytocin was selected partly because the influence on biological activity of the aminoacid in position 7 of oxytocin is not yet known. Furthermore, proline and glycine play similar roles in the structure of proteins; both occur at the ends of helical stretches and lead to bending of a chain. Thus, while the proline residue probably lends a definite conformation to oxytocin, a glycine moiety in the same position would at least allow the molecule to take up a similar conformation, particularly if the geometry of the hypothetical receptor site provides for this. While our synthetic work was in progress, a paper on 7-glycine-lysine-vasopressin by Kolc, Zaoral, and Sorm⁶ suggested similar considerations.

The synthesis of 7-glycine-oxytocin, closely followed the stepwise preparation⁴ of oxytocin except that instead of converting the protected C-terminal tripeptide ester into the corresponding amide, the build-up of the chain started directly with the amide of the C-terminal amino-acid. Properties of the final product and of the intermediates in the synthesis of the hormone analogue are summarized in the Table.

Although the risk of racemization through β -elimination was present only during the introduction of the two S-benzylcysteine residues, ethyldi-isopropylamine was used in all acylations. The application of ethyldi-isopropylamine instead of triethylamine caused no difficulty in the coupling steps or in the isolation of the products. This preparation of 7-glycine-oxytocin shows that this hindered base can be applied in practical peptide synthesis.

The 7-glycine analogue of oxytocin exhibits the uterine-contracting ability of oxytocin; its potency⁷ is about 330 units/mg. In the assay for antidiuretic activity⁸ only about 0.01 unit/mg. potency is found; thus 7-glycine-oxytocin seems to have an increased selectivity in its hormonal spectrum.

We thank Dr. Stanford L. Engel of the Squibb

CHEMICAL COMMUNICATIONS, 1968

	М.р.		Found (calc.) (%)													
Compound ^a	(uncorr.)	$[\alpha]_{\mathbf{D}}^{28}$	С	H	N	S	NH3	Asp	Glu	Gly	Cys	i-Leu	Leu	Tyr	S-Bzl-Cys	R _F
(I)		—14·7 с 0·9 м-НОАс	49·4 (49·7)	6·5 (6·5)	17·6 (17·4)	6·6 (6·6)	3.0	1.0	1.1	2 ·0	2 ·0	1.0	1.0	1.0		0.40 ^b 0.60 ^c
(II)	103-104°	8.5 cl, DMF														
(III)	113-115		56·9 (57·1)	7·0 (6·9)	14·8 (14·8)		1.0			2 ·0			0.95			
(IV)	182	– 35·5 cl, DMF	56·9 (57·0)	6·6 (6·5)	12·2 (11·9)	5·7 (5·4)	1.0			2 ·2			1.0		1.0	0.59d
(V)	221-222	— 43 ·1 cl, 80% HOAc	56·2 (56·0)	6·4 (6·3)	13·4 (13·3)	4·7 (4·7)	$2 \cdot 1$	1.1		1.8			1.0		1.0	0.46d
(VI)	234-236 (decomp.)	-47.6 cl, 80% HOAc	54·3 (54·5)	6·5 (6·3)	15·6 (15·5)	4·0 (3·9)	2.8	1.0	1.1	2 ·0			0·9		0.95	0.29d
(VII)	252 (decomp.)	- 48·3 cl, 80% HOAc	55-3 (55-7)	6·7 (6·7)	15·1 (15·1)	3•6 (3•5)	2.9	1.0	1.0	2.1		0.9	1.0			0.40d
(VIII)	258–260 (decomp.)	— 32·1 cl, DMF	59·9 (60·0)	6·7 (6·6)	13·2 (13·1)	2·8 (2·7)		1.0	1.0	2.3		0.9	0.9		0.9	0.56^{d}
(IX)	257—259 (decomp.)	-47·6 cl, DMF	58·1 (58·0)	6·6 (6·4)	13·2 (13·1)	5·1 (5·0)	2.9	1.1	1.1	2.1		1.0	1.0	0.95	2.1	

TABLE

^a (I) 7G-lycine-oxytocin, (II) Benzyloxycarbonyl-t-leucylglycinamide, (III) Benzyloxycarbonylglycyl-t-leucyl-glycinamide, (IV) N-Benzyloxycarbonyl-t-oxyteinylglycyl-t-leucyl-glycinamide, (VI) Benzyloxycarbonyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucyl-glycinamide, (VI) Benzyloxycarbonyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide, (VII) Benzyloxycarbonyl-t-splutaminyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide, (VII) Benzyloxycarbonyl-t-isplutaminyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide, (VII) Benzyloxycarbonyl-t-isplutaminyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide, (VII) Benzyloxycarbonyl-t-isplutaminyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide, (IX) N-Benzyloxycarbonyl-S-benzyl-t-cysteinyl-t-isplutaminyl-t-asparaginyl-S-benzyl-t-cysteinyl-t-isplutaminyl-t-asparaginyl-S-benzyl-t-cysteinylglycyl-t-leucylglycinamide,
 ^b T.I.c. on pre-coated silica gel plates; developed with butanol-acetic acid-water (4:1:5); spot revealed with ninhydrin.

^c Developed with butanol-pyridine-acetic acid-water (30:20:6:24); spot revealed with ninhydrin.

d Hydrobromide of the N-deprotected peptide. T.l.c. developed with butanol-acetic-acid, water (4:1:1); spot revealed with ninhydrin.

Institute for Medical Research for the biological studies.

(Received, May 6th, 1968; Com. 567.)

¹G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Amer. Chem. Soc., 1966, 88, 1339. ²S. Sakakibara, and M. Itoh, Bull. Chem. Soc., Japan, 1967, 40, 656.

³ M. Bodanszky and A. Bodanszky, Chem. Comm., 1967, 519.

- ⁴ M. Bodanszky and V. du Vigneaud, J. Amer. Chem. Soc., 1959, 81, 5688.
 ⁵ M. Bodanszky, Ann. New York Acad. Sci., 1960, 88, 655.
 ⁶ J. Kolc, M. Zaoral, and F. Sorm, Coll. Czech. Chem. Comm., 1967, 32, 2667.
 ⁷ R. A. Munsick, Endocrinology, 1960, 66, 451.
- ⁸ W. H. Sawyer, Endocrinology, 1958, 63, 694.