Structural Effects on the Carbonyl Frequency of Saturated Aliphatic Ketones

By J. E. DUBOIS* and A. MASSAT

[Laboratoire de Chimie Organique Physique (Associé au C.N.R.S.) 1, rue Guy de la Brosse, Paris 5°, France]

We have shown,^{1,2} that the carbonyl frequency $v_{C=0}$ of saturated aliphatic ketones in the gas phase is a function of the different positions of the carbonyl environment (we call this a frequency-topology relationship). Other authors have attempted to correlate this frequency with reactivity parameters such as Taft's $\sigma^{*,3}$ or E_{s} .⁴ It is our intention to specify the range of applicability of such frequency-reactivity correlations and to show that these frequencies are best described by the topology relationship.

Our study is based on values for 28 ketones, five of which are $\alpha \alpha'$ -hexasubstituted, in the gas phase; the carbonyl environment is limited to the A_i and B_{ij} substituents [this notation comes from the topological diagram of a ketone⁵:

$$-\text{CO}-C \left\langle \cdot \right\rangle (A_i)_k \left\langle \cdot \right\rangle (B_{ij})_k$$

with k = 1 or 2, corresponding to each alkyl group].

We have examined several correlations between $v_{C=0}$ and the different polar, steric, or hyperconjugative parameters or linear combinations thereof. The best are those which employ the sum of polar and steric parameters (equations 1 and 2:† the first uses Taft's $E_{\rm s}$ and the second Hancock's⁶ $E_{\rm s}^{\rm c}$ steric parameters).

$$\nu_{\rm C=0}^{\rm gas} = 1741 + 22 \,\Sigma \sigma^* + 4\Sigma E_{\rm s} \qquad (1)$$

$$\nu_{\rm C=0}^{\rm gas} = 1741 + 7 \, \Sigma \sigma^* + 4.4 \Sigma E_{\rm s}^{\rm c} \qquad (2)$$

However, these relationships apply only to ketones which are not $\alpha\alpha'$ -hexasubstituted (see Figure a), and we observe that for 23 such

ketones involving 11 different groups, 22 values of σ^* and E_s (or E_s^c) are required. Furthermore, systematic deviations are found for several alkyl groups, both in solution and in the gas phase. Ketones involving neopentyl and tetramethyl-propyl groups are seen to deviate from the best line (Figure a). Thus, in their present form, these frequency-structure correlations do not permit accurate $v_{c=0}$ prediction. To improve the calculation, it would be necessary to add correction terms taking account of interactions inside and between the alkyl groups.

Even so, equations 1 and 2, while equally accurate, give quite different weights to the polar

- and ▲: ketones with one neopentyl or one triptyl group.
- \Box $\alpha \alpha'$ -hexasubstituted ketones.

 \cap

[†] The correlation coefficients for both equations are: 0.98. Mean and maximum deviations are 1.27 and 4.7 cm.⁻¹, in equation (1); 1.26 and 4.3 cm.⁻¹ in (2). Standard deviations for polar and steric contributions are 4.5 and 0.5 cm.⁻¹ in equation (1); 6 and 0.5 in (2).

CHEMICAL COMMUNICATIONS, 1968

contribution; it seems reasonable to ask whether such frequency-structure correlations facilitate the understanding of structural effects (see ref. 7). At best, one can say that they show a general tendency of $v_{c=0}$ to be correlated with reactivity parameters.

We obtain more accurate results^{1,2} with the frequency-topology relationship (equation 3), ‡ as shown in Figure b.

$$\nu_{\rm C=0}^{\rm gas} = 1740 + I(\varepsilon) \tag{3}$$

with $I(\varepsilon) =$

$$-\sum_{k=1}^{2} [(\mathbf{A}_{1})_{k} + 4(\mathbf{A}_{2})_{k} + 9(\mathbf{A}_{3})_{k} + 2\cdot 5\sum_{i=1}^{3} (\mathbf{B}_{i1})_{k} + 2(\mathbf{B}_{12})_{k} + 6\cdot 5(\mathbf{A}_{3})_{k} \cdot (\mathbf{B}_{13})_{k}] - 13(\mathbf{A}_{3})_{1} \cdot (\mathbf{A}_{3})_{k}$$

The two terms $(A_3)_1 \cdot (A_3)_2$ and $A_3 \cdot B_{13}$ (the latter occurs in a tetramethylpropyl group) take account

of interaction between substituents; $I(\varepsilon)$, the environment contribution, is a specific parameter of a ketone.

This relationship (equation 3) requires the knowledge of only eight parameters (one of which, the B₁₃ contribution, is found to be zero). It is expected to apply to a much wider range of ketones. As it is, we have found that the carbonyl frequency of 66 ketones in carbon tetrachloride solution could be correlated with this $I(\varepsilon)$ environment contribution.8

It seems likely that this approach offers a more economical method of dealing with the total effects of alkyl substituents on molecular properties than σ^* and E_s treatments. We are currently studying its application to other systems.

(Received, March 8th, 1968; Com. 283.)

 \ddagger The parameters: -1, -4, -9, -2.5, -2, 0.0 (B_{13} contribution), -6.5, -13 (in cm.⁻¹) were obtained by computing the carbonyl frequency against a linear combination of the different topological elements A_i, B_{ii} which have the value 0 (if the corresponding position is not occupied by a carbon atom) or unity (occupied). The contributions B_{22} , B_{23} , B_{32} , and B_{33} are as yet undetermined; those of the three B_{i1} were found to be the same at ± 0.5 cm.⁻¹ (see ref. 9).

¹ J. E. Dubois and A. Massat, Compt. rend., 1967, 265, B, 757.

² J. E. Dubois, et al., to be published.

³ H. W. Thompson and D. A. Jameson, Spectrochim. Acta, 1958, 13, 236; C. N. R. Rao, G. K. Goldman, and C. Lurie, J. Phys. Chem., 1959, 63, 1311.
⁴ K. J. Morgan and N. Unwin, J. Chem. Soc. (B), 1967, 1336.
⁵ J. E. Dubois and H. Viellard, Bull. Soc. Chim. France, 1968, pp. 900, 905, and 913.
⁶ C. K. Honcolt, J. Amer. Chem. Soc. 1061 82, 4211.

⁶ C. K. Hancock, J. Amer. Chem. Soc., 1961, 83, 4211. ⁷ C. D. Ritchie and W. F. Sager in "Progress in Physical Organic Chemistry", Vol. II; ed. S. G. Cohen, A. Streit-wieser, and R. W. Taft, Interscience, New York, 1964, p. 323.

⁸ J. E. Dubois, A. Massat, and Ph. Guillaume, J. Chim. phys., 1968, 65, 729.

⁹ J. E. Dubois, D. Laurent, and H. Viellard, Compt. rend., 1967, 264, C, 1019.