Electron Spin Resonance Studies of Vanadate, Niobate, Phosphate, and Arsenate in y-Irradiated Calcium Molybdate and Calcium Tungstate

By P. R. Edwards,* S. Subramanian, and M. C. R. Symons (Department of Chemistry, The University, Leicester LE1 7RH)

The hole-centre formed on γ -irradiation of CaWO₄ at 77° K has e.s.r. properties (Table) in accord with expectation for WO_4^- , although there is some evidence that the electron deficiency is shared with an adjacent anion.¹ It has been suggested that the analogous species MoO₄- is formed in CaMoO₄.² We find that traces of VO_4^{3-} , NbO_4^{3-} , PO_4^{3-} , and AsO₄³⁻ result in almost complete replacement of the tungsten or molybdenum centres by centres associated with the impurities.

which we believe to be superhyperfine structure arising from weak interaction with neighbouring WO_4^{2-} or MoO_4^{2-} ions. The e.s.r. parameters of these species are listed in the Table. The results for WO_4^- are in excellent agreement with those given previously,¹ and for PO_4^{2-} are similar to those assigned to this radical in a calcite lattice.³

We suggest that VO_4^{2-} , NbO_4^{2-} , PO_4^{2-} , and AsO₄²⁻ are formed by transfer of an electron from the parent ion to either WO_4^- or MoO_4^- initially

E.s.r. results for the tetroxy-anion radicals. (The A-tensor is in gauss.)

Species	Matrix	Temp. (°к)	g_11	g 22	<i>g</i> 33	a_{11}	a_{22}	a_{33}
VO4 ²⁻	$CaMoO_4$	77	2.0240		$2 \cdot 0228$	20.0		19∙ 3
NbO ₄ ²–	$CaMoO_4$	195 77	2·0 2·0061	$\begin{array}{c} 256 \\ 2{\cdot}0146 \end{array}$	2.0211 2.0480	29 $25\cdot 5$	·8 28·5	30· 3 31·5
PO 4 ²⁻	$CaWO_4$	77	2.0139		2.0112	27.7		$27 \cdot 3$
AsO ₄ ^{2–}	CaWO₄	195 77	$\begin{array}{c} 2 \cdot 0208 \\ 2 \cdot 0070 \qquad 2 \cdot 0122 \end{array}$		$2.0177 \\ 2.0470$	19 23·0	·5 19·0	$18.0 \\ 18.7$
۵WO4-	$CaWO_4$	77	2.0013	2.0064	$2 \cdot 0352$	10	9	10
ªMoO₄⁻	$CaMoO_4$	77	2.007	2.011	2.023			9.3

 $^{\rm a}$ These may be better written as $({\rm WO}_4{\rm -}{\rm WO}_4)^{\rm 3-}$ and $({\rm MoO}_4{\rm -}{\rm MoO}_4)^{\rm 3-}$

The Scheelite host crystals are tetragonal with four molecules per unit cell. In some cases the magnetic centres produced by γ -irradiation reflect this symmetry, being in four magnetically distinct sites related by fourfold axes parallel to the crystallographic c-axis. When this occurs the g- and A-tensors each have three distinct principal values (Table). However, in other instances (Table) only a single magnetic site can be detected, the g- and A-tensors being then axially symmetric. The latter situation can be obtained from the former by warming the Nb and As centres in CaMoO₄ and CaWO₄, respectively, the change being reversible. The effect, which could be achieved either by a mobile distortion or by some form of rotation, may be associated with the occasional appearance of satellite lines at 77° K produced by the radiolysis. The g-tensor is consistent with that expected for a hole-centre, having $g_{av} >$ free-spin. In all cases the A-tensor indicates that the orbital of the unpaired electron is entirely on oxygen, the coupling to the central atom being largely a consequence of spin-polarisation of the σ -electrons.⁴ Therefore, the highest occupied level of the parent diamagnetic ion is, as expected,⁵ associated with oxygen.

If these identifications are correct they provide an interesting link between tetroxy-anions of the non-transition and transition elements.

Acknowledgment is made to the Ministry of Technology for financial support.

(Received, May 10th, 1968; Com. 584.)

- ² M. I. Samoilovich, A. I. Novozhilov, and L. I. Potkin, Zhur. strukt. Khim., 1966, 7, 618.
- ³ R. A. Serway and S. A. Marshall, *J. Chem. Phys.*, **1966**, **45**, 4098.
 ⁴ T. F. Hunter and M. C. R. Symons, *J. Chem. Soc.* (A), 1967, 1770.
- ⁵ A. Carrington and M. C. R. Symons, Chem. Rev., 1963, 63, 443.

.

¹ H. Zeldes and R. Livingstone, J. Chem. Phys., 1961, 34, 247.