A New General Method for the Synthesis of Unsubstituted Phosphino-silanes and -germanes

By A. D. Norman*

(Department of Chemistry, University of Colorado, Boulder, Colorado 80302)

A general method for the synthesis of unsubstituted phosphino-silanes and -germanes, i.e. PH2substituted derivatives, has been much investigated. Although Me₃SiPH₂ can be prepared from the reaction of LiPH₂ with Me₃SiCl,¹ the analogous reactions between KPH₂ and SiH₃Br,² GeH₃Br,³ and dihalogeno-silanes and -germanes⁴ do not yield the desired products. Recently, we reported a new method for the synthesis of GeH₃PH₂ which involves the phosphination of germyl bromide with lithium tetrakis(dihydrogenphosphido)aluminate, LiAl(PH2)4.5 Based on subsequent studies of the reactions of $LiAl(PH_2)_4$ with a variety of other halogeno-silanes and -germanes, we now report a possible general method for the preparation of mono- and bis-phosphino-silanes and -germanes.

The results of some typical reactions between $LiAl(PH_2)_4$ and halogeno-silanes and -germanes are shown in the Table. In each case, $LiAl(PH_2)_4$ in diglyme [bis(2-methoxyethyl)ether], prepared

essentially as described by Finholt $et al.,^{6}$ reacted smoothly with the appropriate halide under the stated conditions to yield the desired phosphinosubstituted products.

$$\begin{split} \text{LiAl}(\text{PH}_2)_4 &+ 4 \text{ MX} \rightarrow \text{LiX} + \text{AlX}_3 + 4 \text{ MPH}_2 \\ \text{LiAl}(\text{PH}_2)_4 &+ 2 \text{ M'X}_2 \rightarrow \text{LiX} + \text{AlX}_3 + 2 \text{ M}(\text{PH}_2)_2 \\ \\ \text{M} &= \text{SiH}_3, \text{Si}_2\text{H}_5, \text{Me}_3\text{Si}, \text{Me}_3\text{Ge} \\ \\ \text{M'} &= \text{Me}_2\text{Si}, \text{Me}_2\text{Ge}; \text{ X} = \text{Cl or Br} \end{split}$$

The product(s) of the reaction mixtures were separated by low temperature fractional distillation. Each component was characterized by i.r., ¹H and ³¹P n.m.r., and mass spectral techniques. The physical and spectral properties of the SiH₃PH₂, Si₂H₆PH₂, and Me₃SiPH₂ prepared in these reactions were in complete agreement with the published values. Trimethylgermyl phosphine, Me₂Si(PH₂)₂ and Me₂Ge(PH₂)₂ were prepared for the first time

Summary	of data	for t	ypical	phosph	hination	reactions
	,		<i>_ _ _ _</i>			

Sily	/l- or g	germyl	halide		Mole ratio halide: LiAl(PH ₂) ₄	Reaction time (temp. °c)	Product (% yield)
SiH _a Br			••		3.1:1.0	20 min. (-45)	SiH, PH, (82)
Si ₂ H _₅ Br	••		••	••	3.4:1.0	20 min. (-45)	Si,H,PH, (52)
Me _s ŠiBr				••	3.0:1.0	15 min. (-10)	Me,SiPH, (58)
Me,SiCl,	••			••	1.5:1.0	20 min. (-10)	$Me_{2}Si(PH_{2})_{2}$ (57)
Me _a GeBr				••	3.1:1.0	20 min. (-23)	$Me_{a}GePH_{2}$ (69)
Me ₂ GeCl ₂	••	••	••	••	1.4:1.0	15 min. (-23)	$Me_2Ge(PH_2)_2$ (46)

and a complete description of these compounds is being reported in detail elsewhere. Small quantities of PH_3 and the parent hydrides (*i.e.* SiH₄ from the SiH₃Br reaction) were also obtained from the phosphination reactions. The source of the PH_3 has not been firmly established yet; however, it appears that the parent silanes or germanes are formed by reduction of the halogeno-silane or -germane by small quantities of residual Al-Hcontaining material which is inevitably present in the $LiAl(PH_2)_4$ solutions.

Acknowledgement is made to the Germanium Information Center, the National Science Foundation, and the donors of the Petroleum Research Fund for support of this work.

(Received, May 17th, 1968; Com. 622.)

- ¹G. W. Parshall and R. U. Lindsey, J. Amer. Chem. Soc., 1959, 81, 6273.
- ² E. Amberger and H. Boeters, Angew. Chem. Internat. Edn., 1962, 2, 52.
- ³ S. Cradock, E. A. V. Ebsworth, G. Davidson, and L. A. Woodward, J. Chem. Soc. (A), 1967, 1229.
- ⁴ A. D. Norman, unpublished observations.
- ⁵ D. C. Wingeleth and A. D. Norman, Chem. Comm., 1967, 1218.
- ⁶ A. E. Finholt, C. Helling, V. Imhof, L. Nielsen, and E. Jacobsen, Inorg. Chem., 1963, 3, 504.