Nuclear Quadrupole Resonance Spectra of ⁷⁵As in Some Dihydrogen Arsenates and of their Deuteriated Analogues

By A. P. Zhukov,* L. S. Golovchenko, and G. K. Semin

(Institute of Elemento-organic Compounds, Academy of Science of the U.S.S.R., Moscow)

PURE nuclear quadrupole resonance (n.q.r.) has been observed at room temperature and at 77° K in Na₂HAsO₄ by Jones and Uehling.¹ However, no positive n.q.r. results on dihydrogen arsenates have so far been reported.²

We have studied the pure n.q.r. spectra of ⁷⁵As in some polycrystalline dihydrogen arsenates MH_2AsO_4 (M = Li, K, Na, Rb, Cs, Ag, NH₄, and Me₄N) and of their deuteriated analogues. Measurements were made with a pulse n.q.r. spectrometer IS-2.³ ⁷⁵As n.q.r. frequencies at 77° K, spin-lattice (T_1) and spin-phase memory, (T_2) relaxation times are listed in the Table. T_1 and T_2 were measured by a method similar to that of Woessner and Gutowsky.⁴ For compounds with weak resonances, T_1 and T_2 have been estimated only approximately.

The n.q.r. frequency is determined by the electric field gradient at the ⁷⁵As site, and hence can serve as a measure of the distortion of the AsO_4 tetrahedron. This distortion arises mostly from the intermolecular hydrogen bonds $O-H \cdots O$ and their dynamical changes. However, the contribution to the field gradients arising from ionically bonded metal-atoms, M, is not small, since the resonance frequencies depend on M.

For the ferroelectric crystals (M = K, Rb, Cs, and NH_4) the frequencies decrease sharply with

CHEMICAL COMMUNICATIONS, 1968

increase in temperature. Such a large temperature variation of n.q.r. frequencies cannot be accounted for by the increase in thermal lattice oscillations; it is probably a result of the intrabond protonic mobility. For nonferroelectric crystals no sharp frequency change has been observed.

To establish the character of dynamic effects, it would be of great interest to study the temperature dependences of the n.q.r. frequencies and the relaxation times, and crystals with different H/D isotopic ratio. The results of the experiments in progress will be published later.

TABLE

Compound				$T(^{\circ}\kappa)$	ν _{res} (Mc./sec.)	T_1 (msec.)	$T_2(\mu \text{sec.})$
$\rm KH_2AsO_4$	••	••	••	77 90	35·07 33·70	30	25
KD.AsO.				77	42.62	350	350
RhH.AsÔ.				77	35.70	120	35
	••	••	••	101	32.80		
RbD.AsO.				77	42.68	1500	300
CsH ₂ AsO ₄				77	37.23	250	40
				148	30.75		
CsD_2AsO_4				77	42.98	500	330
		• •		196	42.95		
NH4H2AsO4				77	35.18	270	40
				196	33.70	10	40
$ND_4D_2AsO_4$				77	38.71	500	15
					39.45	500	60
				196	38.78	—	
					39.45		
Na ₂ HAsO ₄				77	38.37	< 5	30
Na HAsO 71	O ₆ H		••	77	42.11	1000	60
4,	-			196	42.75	50	
				300	43.70		
				77	54.50	400	70
NaH ₂ AsO ₄	• •		••	196	54.50	30	60
				300	54.54		
NaD, AsO,				77	55.78	100	100
LiH ₂ AsO ₄				77	47.24	15	40
LiD ₂ AsO ₄		••		77	48.60	5	
Me ₄ NH ₂ AsO ₄			••	77	40.75	60	50
				196	40.69	10	50
Me ₄ ND ₂ AsO ₄			••	77	48.96	25	80
					49.40	25	80
AgH₂AsO₄			••	77	39.19	1000	150
					$38 \cdot 11$	1300	50
				196	39.22	150	_
					$37 \cdot 29$	200	
				300	39.26		_
					37.83		

The nuclear quadrupole resonance spectra of 75As in polycrystalline dihydrogen arsenates

On replacing hydrogen by deuterium a remarkable isotope effect was observed, the difference between the frequencies in K, Rb, and Cs deuteriated arsenates at 77° k nearly vanishing completely.

We thank Dr. I. Rez and Dr. V. Pakhomov for providing some of the samples used.

(Received, March 20th, 1968; Com. 344.)

- ¹ E. D. Jones and E. A. Uehling, J. Chem. Phys., 1962, 36, 1690.
 ² E. D. Jones, H. B. Silsbee, and E. A. Uehling, Bull. Amer. Phys. Soc., 1962, 7, 483.
 ³ B. N. Pavlov, G. K. Semin, I. A. Safin, E. I. Fedin, and D. J. Stern, Vestnik Akad. Nauk S.S.S.R., 1964, No. 11, 40. ⁴ D. E. Woessner and H. S. Gutowsky, J. Chem. Phys., 1963, 39, 440.