The Reaction of Lithium Salts with Aluminium Borohydride: Nuclear Magnetic Resonance Evidence for Anionic Aluminium Borohydride Species

By M. EHEMANN and H. Nöth*

(Institut für Anorganische Chemie der Universität, Marburg/Lahn Germany)

and N. DAVIES and M. G. H. WALLBRIDGE*

(Department of Chemistry, The University, Sheffield, S3 7HF)

TRIPLE metal hydride systems have formed the basis of much recent discussion. The species $SiH_3 \cdot PH_2 \cdot BH_3$ is established,¹ but various suggestions have been made on the nature of the hydride involved in the species $LiH \cdot AlH_3 \cdot BH_3$. Wiberg and Schrauzer² first treated B_2H_6 with $LiAlH_4$ in ether and suggested that the product was $LiAlH_4$, nBH_3 or $Li[AlH_{4-n}(BH_4)_n]$ where n = 1, 2, 3, or 4, although Ashby and Foster³ have shown that if such ionic species exist in solution they readily decompose to solvated hydrides of the type $AlH_n(BH_4)_{3-n}$ xEt_2O and $LiBH_4$ and/or $(LiAlH_4)_2BH_3$. On the other hand Nöth and Ehemann⁴ reported recently that $[(C_8H_{17})_3NC_3H_7]Al(BH_4)_4$ can be precipitated from etheral solutions of $[(C_8H_{17})_3NC_3H_7]BH_4$ and $Al(BH_4)_3$ (I).

We have now identified the common intermediates in these solutions by study of the ¹H and ¹¹B n.m.r. spectra of mixtures of alkali-metal salts and (I) in ether. The salts LiX (X = BH₄, Cl, H) dissolve freely in an ethereal solution of (I) whereas only LiBH₄ is appreciably soluble in the absence of (I). The ¹H n.m.r. spectrum of an ethereal solution of LiBH₄ shows a sharp quartet for the BH₄⁻ ion which, on addition of (I), steadily broadens until at an approximately 1:1 molar ratio of LiBH₄: Al(BH₄)₃ only a broad (\sim 300 c./sec.) unresolved signal remains. An identical signal is obtained for

CHEMICAL COMMUNICATIONS, 1968

1:1 mixtures of LiH and LiCl with (I) and is similar to that obtained from (I) itself. Addition of excess of LiX to the solution produces a broad quartet superimposed on the broad signal. The ¹¹B spectrum of the LiBH₄/Al(BH₄)₃ mixture is a broad quintet derived from the quintet signals of both LiBH₄ and (I). These spectra are consistent with the equilibria:

LiX + Al(BH₄)₃
$$\stackrel{Et_2O}{\longleftarrow}$$

(A)
Li[Al(BH₄)₃X] $\stackrel{Et_2O}{\longleftarrow}$ LiBH₄ + Al(BH₄)₂X
(B) (C)

in which B is probably the predominant form at 25°. The temperature variation is illustrated by both the ¹H and ¹¹B spectra of the clear LiBH₄-Al(BH₄)₃ solution at -50° . The former consists of a broad quartet superimposed on the broad signal while the latter is split into a multiplet, probably

arising from a series of overlapping quintets, suggesting an increasing shift to the components (C) at lower temperatures. In addition the ¹¹B spectra of both 2:1 and 1:2 mixtures of LiBH₄-Al(BH₄)₃ show additional quintets superimposed upon that from (B) suggesting that only a 1:1 interaction occurs and that species of the type $Li_2[Al(BH_4)_5]$ and $Li[Al_2(BH_4)_7]$ need not be considered.

Removal of the solvent also displaces the equilibrium towards the products (C) and the reactants (A) illustrating a novel use of (I) as a covalent tetrahydroborating reagent for ionic species in addition to the previously reported reactions with the covalent metal halides.⁵ It may also be concluded that the increased reactivity of LiBH₄ solutions when AlCl₃ is added is due to the formation of similar intermediate species, since broadening of the quartet (obtained from a LiBH₄-Et₂O solution) also occurs on addition of a AlCl₃-Et₂O solution.

(Received, May 30th, 1968; Com. 716.)

¹ J. E. Drake and J. Simpson, Chem. Comm., 1967, 249.

- ² E. Wiberg, A. Jahn, W. U. Neumeier, and G. N. Schrauzer, unpublished; quoted by H. Nöth. Angew. Chem., 1961, 73, 371.
- ³ E. C. Ashby and W. E. Foster, J. Amer. Chem. Soc., 1966, 88, 3248.
- ⁴ H. Nöth and M. Ehemann, Chem. Comm., 1967, 685.
- ⁵ H. R. Hoekstra and J. J. Katz, J. Amer. Chem. Soc., 1949, 71, 2488.