
The Rearrangement of 6a-Thiathiophthenes by Nucleophiles

By J. G. DINGWALL and D. H. REID*

(Department of Chemistry, The University, St. Andrews, Scotland)

WE recently reported¹ that the Vilsmeier salts (I), prepared by the condensation of 3-methyl(enc)-1,2-dithiolium salts with NN-dimethylthioformamide in acetic anhydride, are converted into 6athiathiophthenes (II) by sodium hydrogen sulphide in aqueous dimethylformamide at room temperature. It was noted that the salt $(I; R^1 = Me)$, $R^2 = R^3 = H$; X = Br) gave, in addition to 2-methyl-6a-thiathiophthene (IIa) (29%), a substantial quantity (31%) of 2-methyl-4H-thiapyran-4-thione (IIIa). We have now established that 6a-thiathiophthenes react with sodium hydrogen sulphide in aqueous dimethylformamide to give 4H-thiapyran-4-thiones (III), provided at least one of the positions 2 and 5 is unsubstituted. The difference between the rates of formation and decomposition of 6a-thiathiophthenes at room temperature is sufficiently large in most cases to allow the 6a-thiathiophthene to be isolated in high yield. Results of comparative studies illustrating substituent effects on the rate of rearrangement are summarised in Table 1.

6a-Thiathiophthenes rearrange more rapidly and completely to 4H-thiapyran-4-thiones when

TABLE 1

Reaction of 6a-thiathiophthenes (1 mmole) with sodium hydrogen sulphide (10 mmoles) in dimethylformamide (20 ml.) and water (5 ml.) at 70° for 30 min.

	Products	
		Yield of recovered starting material
I-Thiapyran-4-thione	Yield	(%)
Methyl-(IIIa) ^b	42	27
5-Diphenyl-(ÍIIb) ^b	44	40
Phenyl-5-methyl-(IIIc) ^b	29	65
5-Diphenyl-(IIId) ^b	99	
	65	3
t-Butyl-(IIIf) ^b	59	34
	5-Diphenyl-(ÍIIb) ^b Phenyl-5-methyl-(IIIc) ^b	I-Thiapyran-4-thioneYieldMethyl-(IIIa) b425-Diphenyl-(IIIb) b44Phenyl-5-methyl-(IIIc) b295-Diphenyl-(IIId) b99Phenyl-(IIIe)65

* Heated 15 min. at 50°.
b New compounds.

• Stood 5 min. at room temperature.

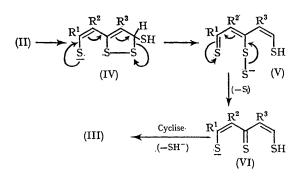

treated with sodium sulphide in aqueous dimethylformamide (Table 2). For preparative purposes A probable precursor of the 4H-thiapyran-4thiones is the anion (VI) (or tautomer) formed

TABLE 2

Rearrangement of 6a-thiathiophthenes (1 mmole) into 4H-thiapyran-4-thiones by sodium sulphide (10 mmoles) in dimethylformamide (20 ml.) and water (5 ml.) at 60°. Reaction time 5 min.

		Yield
6a-Thiathiophthene	4H-Thiapyran-4-thione	(%)
2,4-Diphenyl-(IIb)	2,5-Diphenyl-(IIIb)	80
2-Phenyl-4-methyl-(IIc)	2-Phenyl-5-methyl-(IIIc)	77
2-Phenyl-(IIe)	2-Phenyl-(IIIe)	69
2-t-Butyl-(IIf)	2-t-Butyl-(IIIf)	76

the corresponding Vilsmeier salt precursors may be employed in place of the 6a-thiathiophthenes to give the 4H-thiapyran-4-thiones directly, in comparable yields. The sequence 1,2-dithiolium salt \rightarrow Vilsmeier salt \rightarrow 4H-thiapyran-4-thione thus constitutes a novel flexible synthesis of 4Hthiapyran-4-thiones.

according to the sequence $(II) \rightarrow (IV) \rightarrow (V) \rightarrow (VI) \rightarrow (III)$. We envisage the anion (VI) arising by disproportionation of the intermediate (V), rather than by reductive cleavage of an S-S bond in the 6a-thiathiophthenes by hydrosulphide or sulphide. It is significant in this connection that the 6a-thiathiophthenes (IIb) and (IIe) also react with sodium hydroxide in aqueous dimethylformamide to form the 4*H*-thiapyran-4-thiones (IIIb) and (IIIe), respectively, as the major reaction products. We defer further discussion of the mechanism until further studies of 6a-thiathiophthenes with nucleophiles are complete. Satisfactory elemental analyses and n.m.r.

spectral data were obtained for all new compounds. The authors thank the Carnegie Trust for the Universities of Scotland for a Research Studentship (to J.G.D.), and the S.R.C. for supporting this work.

(Received, May 20th, 1968; Com. 626.)

¹ J. G. Dingwall, S. McKenzie, and D. H. Reid, J. Chem. Soc. (C), 1968, in the press.