The Electronic Spectra of the μ -Superoxodecammine- and μ -Superoxodecacyano-dicobalt(III) Ions

By JACK BARRETT

(Department of Chemistry, Chelsea College of Science and Technology, London, S.W.3)

The electronic spectrum of the μ -superoxodecamminedicobalt(III) ion, { $(NH_3)_5CoO_2Co(NH_3)_5$ }⁵⁺, has been reported¹⁻³ and our observations are consistent with those of Sykes.³ The spectrum of the μ -superoxodecacyanodicobalt(III) ion, [(CN)₅CoO₂Co(CN)₅]⁵⁻, has been reported by Mori *et al.*⁴ and our observations are similar. The main features of the electronic spectra of the two ions are shown in the Figure in which the transition energies (kcal. mole⁻¹) and corresponding molar absorption coefficients, ϵ , (M⁻¹ cm.⁻¹) are quoted for the absorption maxima and shoulders (sh).

The hexamminecobalt(III) ion exhibits two

crystal-field transitions, ${}^{5} {}^{1}A_{1q} \rightarrow {}^{1}T_{1q}$ at 63 kcal. mole⁻¹ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ at 84 kcal. mole⁻¹. If one ammonia ligand is replaced, say, by a chloride ion the point-group symmetry changes from O_h to C_{4v} and the ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ band is split and gives rise to two transitions; ${}^{1}A_{1} \rightarrow {}^{1}E$ and ${}^{1}A_{1} \rightarrow {}^{1}A_{2}$. In the chloropentamminecobalt(III) ion⁵ the three transitions require the energies 55, 80, and 101 kcal. mole-1.

The three bands at 43, 60, and 83 kcal. mole⁻¹ of the decammine complex may be interpreted as being typical cobalt(III) absorption as first suggested by Linhard and Wiegel.² Such transitions are consistent with a change to C_{4v} 'local' symmetry around each of the cobalt atoms in the bridged decammine complex, the superoxide ion being shared by the two pentamminecobalt groups.

The very high intensity, 97 kcal. mole⁻¹, band may be interpreted as a charge-transfer absorption. From the photochemistry of the decammine complex in the 97 kcal. mole-1 band6 it would appear that the charge transfer occurs from an orbital, centred on the Co-O₂-Co system with the major portion of the electron density on the superoxogroup, to an *e* antibonding orbital on one or other of the cobalt atoms. As a result of this transfer the complex dissociates to give molecular oxygen.

The effect of a change in crystal-field strength by the replacement of ammonia by cyanide ion in the bridged dicobalt complex is as would be expected for the *d*-*d* transitions: ${}^{2}A_{1} \rightarrow {}^{2}E$, ${}^{2}A_{1} \rightarrow {}^{2}A_{1}$, and ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$. These absorptions are shifted to higher energies by 16, 18, and 21 kcal. mole⁻¹ respectively, compared to the decammine complex. The fourth band of the decacyanocomplex is shifted to lower energy (92 kcal. mole⁻¹) and would appear from its intensity to be the corresponding charge-transfer band. Such a shift may be understood in terms of either a low lying t_{2}^{*} orbital or to the configurational interaction of the charge-transfer band with the near d-d bands. From a consideration of intensities, it would appear that in the decammine complex the charge-transfer band interacts with the ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$ band. This would result in the charge-transfer band moving to higher energy and the ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$ band moving to lower energy as compared to their unperturbed

energies. In the decacyano-complex the higher crystal-field shifts the ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$ band to a higher energy than the charge-transfer band. Configurational interaction would then force the ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$ band to higher energy. This would explain the apparent 21 kcal. mole⁻¹ shift of the ${}^{2}A_{1} \rightarrow {}^{2}T_{2}$ band.

FIGURE. The transition energies (kcal. $mole^{-1}$) and the molar absorption coefficients (in parenthesis) for the μ -superoxodecammine- and μ -superoxodecacyano-dicobalt(111) ions.

The photochemistry of the decacyano-complex⁷ gives further evidence for the assignment of the 92 kcal. mole⁻¹ band as a charge transfer from the superoxo-group to the cobalt resulting in the evolution of molecular oxygen.

The movement of the charge-transfer band to lower energy and that of the ${}^{2}A_{1} \rightarrow {}^{2}A_{2}$ band to higher energy are the causes of the red-brown colour of the decacyano-complex, the paramagnetic dicobalt complexes usually possessing a green colour.8

(Received, May 30th, 1968; Com. 699.)

¹S. Yamada, Y. Shimura, and R. Tsuchida, Bull. Chem. Soc., Japan, 1953, 26, 72; J. P. Servaud, Compt. rend., ¹ Jammada, T. Summada, and K. Barnartt, J. Inorg. Nuclear Chem., 1961, 22, 69.
² M. Linhard and M. Weigel, Z. anorg. Chem., 1961, 308, 254.
³ A. G. Sykes, Trans. Faraday. Soc., 1963, 59, 1325.

- ⁴ M. Mori, J. A. Weil, and J. K. Kinnaird, J. Phys. Chem., 1967, 71, 103.
- ⁵ M. Linhard and M. Weigel, Z. anorg. Chem., 1951, 266, 49.
- ⁶ J. E. Barnes, J. Barrett, R. W. Brett, and J. Brown, J. Inorg. Nuclear Chem., in the press. ⁷ J. Barrett, R. M. Harward, D. W. Hawkins, D. Leeson, and L. H. R. Patrick, unpublished results.
- ⁸ J. A. Connor and E. A. V. Ebsworth, Adv. Inorg. Chem. Radiochem., 1964, 6, 279.