Spectroscopic Studies of Bromine Oxides: the Infrared Spectrum of Solid Bromide Monoxide

By C. CAMPBELL, J. P. M. JONES, and J. J. TURNER* (University Chemical Laboratory, Lensfield Road, Cambridge)

OF the possible halogen oxides of formula XOX (X = halogen), OF₂ and Cl₂O have accurately known structures and spectral properties,^{1,2} I₂O is unknown and Br₂O, although characterised by analysis,³ has had no structural properties established. We report some preliminary i.r. data on solid Br₂O.

The oxide $(BrO_2)_x$ was prepared by passing a high voltage electrical discharge (1600 v, 50 mA) through a bromine-oxygen gas mixture $(Br_2:O_2 \sim 1:5)$ at about 1 torr pressure in a Pyrex vessel at -196° . Ozone and bromine were removed by pumping as the sample warmed to -50° ; the $(BrO_2)_x$ was then allowed to decompose slowly by warming and the products pumped through a trap at -196° ; the mixture obtained was purified by pumping off the bromine and the other oxides at $-63 \cdot 5^{\circ}$ leaving pure Br₂O.^{3,4} This was then allowed to distil on to a cold (-196°) caesium iodide or Polythene window in a conventional glass cold cell. Considerable decomposition occurred even with a minimum path length; hence our inability to obtain any gas-phase spectra. The spectra obtained are of solid Br₂O-Br₂ mixtures since it is not possible to control the temperature of the window sufficiently accurately to distil off the bromine. The spectra shown in the Figure were recorded on Perkin-Elmer 521 and FS 720 spectrometers, and the samples were annealed by allowing them to warm up in the i.r. beam while monitoring the spectra, and then re-cooling to -196° . Figure 1c shows an expanded spectrum obtained in the high frequency region using $\sim 25\%$ ¹⁸O₂ in the preparation-it was not practicable to study the low frequency region using ¹⁸O₂ because of the low intensity of the low frequency bands and the great expense of 18O2.

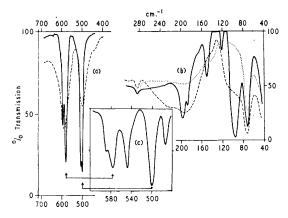


FIGURE. The infrared spectra of solid Br_2O obtained on Perkin-Elmer 521 (a) and R.I.I.C. FS 720 (b) spectrometers: \cdots background; - - solid spectrum before annealing; (c) the expanded spectrum of ${\rm Br_2O}$ prepared with oxygen containing $\sim 25\%$ $^{18}{\rm O_2}.$

The spectra are most satisfactorily explained as the vibrations of a bent triatomic molecule of symmetry C_{2v} as follows: v_3 (asymmetric stretch) 587 cm.⁻¹, ν_1 (symmetric stretch) 504 cm.⁻¹, ν_2 (bend) 197 cm.-1; the bands at 150, 121, and 95 cm.⁻¹ are almost certainly lattice modes. This assignment follows from the experimental facts: (i) there are three readily assigned vibrations in the regions expected (cf. OF_2 and $Cl_2O^{1,2}$), v_3 at 821 and 671, ν_1 at 925 and 631, and ν_2 at 461 and 296 cm.⁻¹; (ii) the isotopic shifts (for Br₂ ¹⁸O, $\nu_3 \approx 553$, $\nu_{1}\approx 476$ cm.-1) agree with predictions for a harmonic simple valence force field; (iii) the vibrations at 150, 121, and 95 cm.⁻¹ are resolved only

after annealing, and are in the regions expected for librational and translational lattice modes; (iv) the splittings of the fundamentals can be ascribed to correlation field splitting.[†]

In principle, assuming a value of 113° for the Br-O-Br angle (cf. OF_2 , 103° ; Cl_2O , 110°), the three fundamental frequencies with the additional data from isotopic substitution provide enough information to evaluate the four force constants of a general valence force field:

$$2V = K[(\delta r_1)^2 + (\delta r_2)^2] + K_{2\theta}(r\delta_{2\theta})^2 + 2K_1\delta r_1\delta r_2 + 2K_2(\delta r_1 + \delta r_2)r\delta_{2\theta}.$$

In practice the isotopic shifts are not very helpful. A variety of methods of calculating the force constants (e.g. minimising K_2 , setting $K_1 = 0$, isotopic frequencies, Lehmann's average rule⁵) result in the most likely set: $K = 2.4 \pm 0.2$. $K_{20} = 0.4 \pm 0.1, K_1 = 0.4 \pm 0.2, K_2 = 0.2 \pm 0.1$ mdyne/Å. The force constant K = 2.4 mdyne/Å is the value for the prototype single Br-O bond; Rochkind and Pimentel^{2b} have predicted $K = 2 \cdot 1$ mdyne/Å from data on OF₂, Cl₂O, and other halogen compounds. That the value of 2.4 is reasonable is seen from the Table. The force constants all refer to nominal X-O single bonds; the reason for the variation for chlorine and bromine oxygen compounds is not yet understood.

Force constants of a number of halogen-oxygen species, (values in mdynes/A.)

x		F	Cl	Br
OX ₂ OX-	••	3.95a	$2 \cdot 75^{b}$	2·4e
OX [_]	••		3.3c	$3 \cdot 0^{t}$
HOX	••		3.98a	3.59d

* Ref. 1; b ref. 2b; c ref. 6; d ref. 7; e this work; ^t ref. 8.

This research was supported by a grant from the S.R.C.

(Received, May 9th, 1968; Com. 581.)

[†] This is based partly on simple matrix isolation experiments and also on the analysis of the variation of the splitting with ¹⁶O/¹⁸O ratio. Details will be published elsewhere.

¹ L. Pierce, N. Di Cianni, and R. H. Jackson, J. Chem. Phys., 1950, 18, 685; 1963, 38, 730; J. W. Nebgen, F. I. Metz, and W. B. Rose, J. Mol. Spectroscopy, 1966, 21, 99. ² (a) G. E. Herberich, R. H. Jackson, and D. J. Millen, J. Chem. Soc. (A), 1966, 336; (b) M. M. Rochkind and G. C.

- ⁴ R. Schwarz, and M. Schmeisser, Ber., 1937, 70, 1163.
- ⁵ W. J. Lehmann, J. Mol. Spectroscopy, 1961, 7, 261.
 ⁶ G. Kujumzelis, Z. Physik, 1939, 39, 665.
- ⁷ I. Schwager, and A. Arkell, J. Amer. Chem. Soc., 1967, 89, 6006.
- ⁸ J. C. Evans, and G. Y.-S. Lo, Inorg. Chem., 1967, 6, 1483.

Pimentel, J. Chem. Phys., 1965, 42, 1361. ⁸ R. Schwarz, and H. H. Wiele, Naturwiss, 1938, 26, 742; J. prakt. Chem., 1939, 152, 157.