Force Constants in the Hexacarbonylrhenium(I) Cation

By E. W. ABEL,* R. A. N. MCLEAN, M. G. NORTON, and S. P. TYFIELD

(Department of Inorganic Chemistry, The University, Bristol)

NORMAL-CO-ORDINATE analyses¹⁻³ of the hexacarbonyls of chromium, molybdenum, and tungsten have recently been invalidated by the reassignment⁴ of several fundamentals and the allowance for anharmonicity. In a preliminary account, using the new assignments and harmonic corrections for $Mo(CO)_6$, a force field with eight force constants has been used to assess⁵ energy factoring and anharmonicity in the carbonyl-stretching region.

A study of the i.r. and Raman spectra of the hexacarbonylrhenium(I) cation in $[Re(CO)_6]ClO_4$ and $[Re(CO)_6]AsF_6$ enabled us to assign⁶ twelve of the thirteen fundamental frequencies. A full normal co-ordinate analysis has been undertaken for $[Re(CO)_{6}]^{+}$, and more rigorous force constants calculated. An examination of previously used force fields^{2,3,7} showed the most promising⁷ to be inapplicable to both $[\operatorname{Re}(\operatorname{CO})_6]^+$, and the new assignments^{4,6} of the neutral hexacarbonyls. Best results are obtained using a modified valence force field which employs the twelve force constants enumerated below. The calculated⁶ frequencies $v_1 - v_{13}$ are respectively 2224, 444, 2139, 430, 354, 2131, 583, 356, 77, 486, 88, 522, and 65 cm.⁻¹. These have all converged precisely upon the observed frequencies (ν_1 , ν_3 , and ν_6 corrected for anharmonicity) with the exception of v_9 and v_{11} (observed at 80 and 82 cm.⁻¹ respectively), and the unobserved v_{13} . The values of the selected force constants producing such a convergence are (in mdynes/Å and in the notation of ref. 7), F_{co} , 18·304; F_{MC} , 2·759; $F'_{co,co}$, 0·168; $\mathbf{F}_{CO,CO}^{''}$, 0.238; $\mathbf{F}_{MC,MC}^{'}$, 0.455; $\mathbf{F}_{MC,MC}^{''}$, 0.035; $F_{\beta}, 0.263; F_{\alpha}, 0.049; F_{\beta,\beta}', 0.055; F_{\beta,\beta}', 0.026; F_{MC,\beta}', 0.145. The value of <math display="inline">F_{MC,CO}'$ was constrained⁵ at 0.500, and the introduction of non-zero values of $F_{MC,CO}''$ and $F_{MC,CO}''$ cause divergence in the computation of frequencies.

The ready convergence in our calculations confirms the Smith-Jones re-assignment⁴ for the $M(CO)_6$ system. Whilst we find the $T_{1u} \delta(MCO)$ band is at higher energy than the $T_{1u} \nu(MC)$ bond, as previously assigned¹⁻³ in the $M(CO)_6$ systems, on the basis that all $\delta(MCO)$ vibrations occur at higher energy than the $\nu(MC)$ modes; our present assignment shows the $T_{1g} \delta(MCO)$ band occurring well down in the so-called $\nu(MC)$ region of 500—350 cm.⁻¹. Thus a generalized energy separation⁸ of $\nu(MC)$ and $\delta(MCO)$ modes is invalid and a reassessment of many earlier assignments⁹ of substituted octahedral metal carbonyls may be necessary.

Based on π -bonding considerations,¹⁰ the rhenium-carbon bond in Re(CO)⁺₆ should be weaker than the tungsten-carbon bond in isoelectronic W(CO)₆. Using our same force field we find the M-C force constants in Re(CO)⁺₆ and W(CO)₆ are Re-C 2.76 and W-C 2.73 mdynes/Å. It would therefore, appear that the overall effect of the formal positive charge has virtually no effect on the strength of the metal-carbon bond; any loss in π -bonding is presumably compensated by improved σ -donation.

In line with previous criticisms^{5,11,12} of the approximate method of calculation of CO force constants in octahedral species, we find that the ratio (0.7) of *trans*: *cis* CO interaction constants in $\operatorname{Re}(\operatorname{CO})_{6}^{+}$ is very different from the predicted value

of 2 in these approximations^{7,13} and that harmonized CO frequencies produce significantly greater values of CO force constants.5

The use of these harmonic frequencies for the CO-stretching modes has been shown⁵ to be essential for the calculation of meaningful force constants. However, even with the use of harmonic CO frequencies to determine the CO force constant in $\operatorname{Re}(\operatorname{CO})^+_6$, the rigorous value (18.30 mdynes/Å) and the approximate value (18.67 mdynes/Å) are still significantly different. This difference is a consequence of the approximations in energy factoring; thus for $\operatorname{Re}(\operatorname{CO})^+_6$ our

calculation of potential-energy distribution shows that 6% of the energy in the CO-stretching frequencies is accounted for by mixing with lowerenergy vibrations. This shows that energy factoring can change CO-stretching force constants appreciably, though the degree of change could be similar within a particular symmetry class, such as the much studied M(CO)₅X types.¹⁴

We (S.P.T. and M.G.N.) thank the S.R.C. and (R.A.N.McL.) the Salters Institute for financial support.

(Received, May 14th, 1968; Com. 612.)

¹ H. Murata and K. Kawai (a) J. Chem. Phys., 1957, 27, 605; (b) Bull. Chem. Soc. Japan, 1960, 33, 1008; C. W. F. T. Pistorius and P. C. Haarhoff, J. Mol. Spectroscopy, 1958, 28, 736.

² L. H. Jones, Spectrochim. Acta, 1963, 19, 329.

² J. Brunvoll and S. J. Cyvin, Acta Chem. Scand., 1964, **18**, 1417. ⁴ J. M. Smith and L. H. Jones, J. Mol. Spectroscopy, 1966, **20**, 248. ⁵ L. H. Jones, Inorg. Chem., 1967, **6**, 1269.

⁶ E. W. Abel, R. A. N. McLean, S. P. Tyfield, P. S. Braterman, A. P. Walker, and P. J. Hendra, J. Mol. Spectroscopv, in the press.

H. Jones, J. Mol. Spectroscopy, 1962, 8, 105.
D. M. Adams, "Metal Ligand Vibrations," Edward Arnold, London, 1967, p. 118.

⁹ R. Poilblanc and M. Bigorgne, Bull. Soc. chim. France, 1962, 1301; D. M. Adams, J. Chem. Soc., 1964, 1771; M. A. Bennett and R. J. H. Clark, *ibid.*, p. 5560; D. A. Brown and D. G. Carroll, *ibid.*, 1965, 2822; R. W. Cattrall and R. J. H. Clark, J. Organometallic Chem., 1966, 6, 167; A. A. Chalmers, J. Lewis, and R. Whyman, J. Chem. Soc. (A), 1967, 1817; E. Lindner and H. Behrens, Spectrochim. Acta, 1967, 23A, 3025; I. J. Hyams, D. Jones, and E. R. Lippincott, J. Chem. Soc. (A), 1967, 1987.

¹⁰ E. W. Abel, *Quart. Rev.*, 1963, 17, 133.

L. M. Bower and M. H. B. Stiddard, Inorg. Chim. Acta, 1967, 1, 231 and references therein.
A. Loutellier and M. Bigorgne, Bull. Soc. chim. France, 1965, 3186.

¹³ E. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc., 1962, 84, 4432.

¹⁴ H. D. Kaesz, R. Bau, D. Hendrickson, and J. M. Smith, J. Amer. Chem. Soc., 1967, 89, 2844; F. A. Cotton, A. Musco, and G. Yagupsky, Inorg. Chem., 1967, 6, 1357; B. F. G. Johnson, J. Lewis, J. R. Miller, B. H. Robinson, P. W. Robinson, and A. Wojcicki, J. Chem. Soc. (A), 1968, 522.