The Reaction of Organoboranes with Neutral Hydrogen Peroxide

By D. B. BIGLEY[†] and D. W. PAYLING

(Loughborough University of Technology, Leicestershire)

WHILE the reaction of organoboranes with alkaline hydrogen peroxide leads to high yields of alcohol,¹ we have found that the reaction with neutral hydrogen peroxide follows a quite different course. At 0° , in tetrahydrofuran (THF) solution, the major products of reaction are dimeric hydrocarbons, as shown in the Table for trinhexylborane prepared by the hydroboration of hex-1-ene. Similar yields are obtained by use of diglyme or methanol as solvent. The reaction is

insensitive to temperature $(-20^{\circ} \text{ to } + 60^{\circ})$ and to the concentration of organoborane (0.05-2.0M). One mole of hydrogen peroxide per mole of organoborane is sufficient to produce the maximum yield of hydrocarbons, and further hydrogen peroxide slowly produces only hexan-1-ol and a little hexan-2-ol. It therefore appears that only two of the three boron-carbon bonds of the organoborane are broken during the hydrocarbon-producing stages of the reaction. Addition of alkali and

† Present address: University Chemical Laboratories, Canterbury, Kent.

Percentage yields of products in the reaction of aqueous hydrogen peroxide (30% w/v) with tri-n-hexylborane (0.52m)

		THF solution, ^a 0°							
Product					$\begin{array}{rcl} & 24 \ \mathrm{hr.\ reaction} \\ & \mathrm{followed\ by} \\ 3 \ \mathrm{hr.} & 24 \ \mathrm{hr.\ oxidation\ with\ CCl_4\ solution} \\ & \mathrm{reaction\ reaction\ excess\ NaOH-H_2O_2} & 25^\circ \end{array}$				• THF-I2 solution
n-Hexane		••				6.5	6.5	3.1	
Hex-1-ene		• •		• •		0.1	0.1	0.4	
n-Dodecane					$27 \cdot 2$	27.0	28.6	$7 \cdot 2$	0.3
5-Methylundeca:	ne		••	• •	8.1	8.1	8-1	$2 \cdot 4$	0.1
n-Hexanol			••		5.6	5.4	39.6	24.0	20.5
Hexan-2-ol						0.1	2.3		
1-Chlorohexane								27.3	
1-Iodohexane		••	••	••					$25 \cdot 8$

Molar ratios of reactants: \$1.04 H₂O₂: 1.0 R₃B; \$2.72 H₂O₂: 1.0 R₃B; \$2.0 H₂O₂: 1.0 R₃B.

further hydrogen peroxide after 24 hr., under neutral conditions, released another mole of alcohol. Organoboranes containing t-alkyl groups react beyond the boronic acid stage, and less than 1 mole of alcohol is released on subsequent oxidation.

The dimeric products (see Table) suggest that a radical reaction is occurring, the products being similar to those obtained by Brown from the reaction of organoboranes with noble metal oxides.² In order to test this idea, we conducted the neutral peroxide reaction in well stirred solutions of CCl_4 and THF-iodine. The results are shown in the Table. The yield of dimers is considerably reduced, and the alkyl halides are produced in approximately corresponding yields. Hexachloroethane was produced in CCl_4 solution.

When tri-n-hexylborane (12.8 mmole) and trin-pentylborane (13.0 mmole), prepared separately and mixed at 0°, were together subjected to reaction with neutral hydrogen peroxide, n-decane, n-undecane, and n-dodecane were produced in a ratio of 1.03:2.0:0.96. These yields are very close to the statistical ratio, and are consistent with a radical mechanism in which the radicals readily penetrate their solvent cage.

Two reasonable mechanisms may be written for the neutral peroxidation reaction. Organoboranes react with organoperoxyboranes to give dimeric hydrocarbons,³ and in the present case a chain reaction might be envisaged. Alternatively a molecular attack of H_2O_2 on the borane could precede the free radical displacement reaction on boron.⁴ Both mechanisms account for the stoicheiometry and products of the reaction, both in THF

and CCl_4 solutions. The diminished reactivity of the third boron-carbon bond will result from the weaker Lewis acidity of $RB(OH)_2$ and the consequently reduced co-ordination with a third oxygen atom.

(Received, May 29th, 1968; Com. 696.)

J. R. Johnson and M. G. Van Campen, jun., *J. Amer. Chem. Soc.*, 1938, 60, 121; R. Belcher, D. Gibbons, and A. Sykes, *Mikrochim. Acta*, 1952, 40, 76; H. C. Brown, "Hydroboration," Benjamin, New York, 1962, p. 69. ² H. C. Brown, N. C. Herbert, and C. H. Snyder, *J. Amer. Chem. Soc.*, 1961, 83, 1001; H. C. Brown and C. H. Snyder,

ibid., 1002. ³ A. G. Davies, Progr. Boron. Chem., 1964, 285.

⁴ D. S. Matteson, J. Org. Chem., 1964, 29, 3399; J. Grotewold and E. A. Lissi, Chem. Comm., 1965, 21; E. C. J. Coffee and A. G. Davies, J. Chem. Soc., (C), 1966, 1493.