Proton Resonance Studies of the Nature of Aryl Grignard Reagents in Solution

By D. F. EVANS* and V. FAZAKERLEY

(Department of Chemistry, Imperial College of Science, London S.W.7)

A PREVIOUS paper¹ reported the ¹⁹F n.m.r. spectra of a number of fluoroaryl Grignard reagents over a range of temperatures. It was possible to slow down the fluoroaryl exchange and distinguish unambiguously between "RMgX" and " R_2Mg " species. Although proton chemical shifts are normally much smaller than fluorine chemical shifts, we have been able to obtain similar results for a variety of aryl Grignard reagents, using ¹H n.m.r. spectroscopy.

At 35° the resonance due to the o-protons of [3,5-2H2]phenylmagnesium bromide in tetrahydrofuran (THF) is a slightly broadened doublet. As the temperature is lowered, this band broadens. and finally splits into two doublets (Figure). In a solution containing additional bis-([3,5-2H2]phenyl)magnesium, the low-field doublet increases in relative intensity. Accordingly this doublet can be assigned to $(C_6H_3D_2)_2Mg''$, and the high-field doublet to $(C_6H_3D_2)MgBr''$. Similar results are obtained with 2,5-dimethylphenylmagnesium bromide in THF (o-methyl resonance) although here aryl exchange is slower presumably because of steric hindrance (Figure). The observed ratios of ["RMgX"]: ["R $_2$ Mg"] are given in the Table, together with those obtained previously.¹ (There is an error in this paper: 2["RMgX"/["R₂Mg"] should read ["RMgX"]/2["R,Mg"]).

Phenylmagnesium bromide is monomeric in

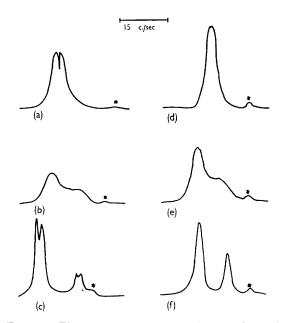


FIGURE. The proton resonance spectra (100 Mc./sec.) of (i) the 0-protons of $0.15M-3,5-C_6H_3D_2MgBr$ in tetrahydro-furan at (a) 35°, (b) -20° , (c) -65° and (ii) the 0-methyl protons of $0.4M-2,6-Me_2C_6H_3MgBr$ in tetrahydrofuran at (d) 35°, (e) 0° and (f) -40° .

* Impurity peak.

CHEMICAL COMMUNICATIONS, 1968

The ratios ["RMgX"]: ["R ₂ Mg"	"] for aryl Grignard reagents†
---	--------------------------------

The ratios [reading is]. [reading if of which readers is a sub-									
Grignard			Solve	ent			Temperature	["RMgX"] ["R ₂ Mg"]	
[3,5- ² H ₂]PhMgBr		THF					30° 40° 50° 60° 70° 80°	1.0_{6} 1.0_{4} 0.81_{3} 0.70_{9} 0.59_{6} 0.54_{1}	
2-*CH _a C ₆ H ₄ ·MgBr		THF	••		••	••	-50°	1.5	
$2-CH_3\cdot CH_2*C_6H_4MgBr$	••	THF Et ₂ O	 	••	 	 	-40° -60°	$^{2 \cdot 0}_{> 20}$	
2,*6-Me ₂ C ₆ H ₃ ·MgBr		THF			••	••	-30° 40^{\circ} 50^{\circ} 60^{\circ}	4.0 ₆ 3.6 3.3 2.8 ₄	
		Et_2O	••	••	••	••	40°	> 20	
$2,*6-Me_{2}C_{6}H_{3}\cdot MgCl$	••	THF	••	••	••	••	— 3 0°	5.5	
2, *4,6-Me_aC₆H₂· MgBr	••	THF	••	••	••	••	-40°	3.5	
$2-*CH_3 \cdot C_{10}H_6 \cdot MgBr$	••	THF 2-Meth	 yltetra	 hydrofi	ıran	••	-20°	3·5 18	
$2-*CF_3 \cdot C_6H_4 \cdot MgBr$	•••	THF		••	••	••	0° - 30° - 60°	4∙0 3∙8 3∙9	
,, · · ·	••	2-Meth	yltetra	hydrof	uran		$ \begin{array}{r} 10^{\circ} \\ -10^{\circ} \\ -20^{\circ} \\ -40^{\circ} \end{array} $	10·6 9·1 7·1 5·6	
,,		Et ₂ O		••	• •	••	-50°	18	
$C_6F_5MgBr^1$	• •	THF		••		••	$+22^{\circ}$	1.4	
· · · · · · · · · · · · · · · · · · ·	••	Et ₂ O	••	••	••	••	-55 to 22°	2.0	
C ₆ F ₅ ⋅MgCl ¹		Et_2O	••	••	••	••	2 2°	4 ·0	
C ₆ F ₅ ·MgI ¹		Et ₂ O	••	••	••	••	22°	2.8	
$C_6H_2 \cdot Cl_2FMgBr^1$		Et ₂ O				••	-63°	~ 5.0	
C ₁₀ H ₆ ⋅FMgI ¹		Et ₂ O	••	• •		••	-75°	>40	
p-FC ₆ H₄·MgBr ¹	••	Et ₂ O	• •			••	-75°	>40	
p-FC ₈ H ₄ ·MgI ¹	••	Et ₂ O	••	· •	••	••	-75°	>40	

* This indicates the resonance that was studied.

† EtMgBr in THF was also studied. The two methylene quartets overlapped considerably $(\delta_{R_2Mg} - \delta_{RMgX} = 0.03 \text{ p.p.m.})$ but $\frac{["RMgX"]}{["R_2Mg"]}$ at -60° was found to be ~0.7.

tetrahydrofuran,² and accordingly values of K for the Schlenk equilibrium

$$(C_6H_3D_2)_2Mg + MgBr_2 \rightleftharpoons 2C_6H_3D_2MgBr \quad (1)$$

can be calculated. From a plot of log K against T^{-1} the extrapolated value of K at 25° is 4.0 ± 0.8 and for reaction (1) ΔH is 3.2 ± 0.5 kcal. and ΔS 13.5 cal. deg.⁻¹. These values are in agreement with those obtained for phenylmagnesium bromide

by Smith and Becker² from measured heats of reaction (3.77, 2.82 kcal. and 12.1 cal. deg.⁻¹ respectively). It can be seen from the Table that the position of the Schlenk equilibrium depends very markedly on the aryl group and also upon the solvent. "Conventional" aryl Grignard reagents in diethyl ether are largely "RMgX", but the more strongly co-ordinating the ether, the greater is the proportion of "R₂Mg" species.

(Received, June 14th, 1968; Com. 778.)

¹ D. F. Evans and M. S. Khan, J. Chem. Soc. (A), 1967, 1643.

² M. B. Smith and W. E. Becker, Tetrahedron, 1967, 23, 4215.