The Novel Structure of $(NH_4)_4 ThF_8$

By Robert A. Penneman,* Robert R. Ryan, and Abraham Rosenzweig

(Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544)

CHEMICAL analysis, and X-ray studies, show that $(NH_4)_4 ThF_8$ is isostoicheiometric, but not isostructural, with the compounds $(NH_4)_4 MF_8$ (M = Pa, U, Np, Pu, and Am) formed by the succeeding five actinides.¹ In the monoclinic series, typified by $(NH_4)_4 UF_8$, the actinide is 8-co-ordinated in a distorted antiprism arrangement.² In triclinic $(NH_4)_4 ThF_8$, however, the thorium is 9-coordinated and one fluorine in the structure is not involved in a Th-F bond. High co-ordination numbers are common with the actinides and lanthanides, often exceeding the stoicheiometric fluoride : actinide ratio in a given compound by sharing fluorides. Examples are: RbPaF₆, (NH₄)₂CeF₆, 8-co-ordinated;³ K₂PaF₇ and Li₄UF₈, 9-co-ordinated.⁴ However, we believe that (NH₄)₄ThF₈ represents the first case where a higher co-ordination number is achieved by sharing fluorides, with exclusion of a fluoride from the co-ordination sphere of the actinide. Thorium is the largest of the tetrapositive actinides, and is therefore the most likely to achieve 9- rather than 8-co-ordination. The monomeric MF_8^{4-} goes over to polymeric 9-fold co-ordination in the $(NH_4)_4MF_8$ series at thorium(IV). In the actinide tetrafluoride-alkali fluoride series, 4:1 (XF:MF₄) complexes are extremely rare while the 3:1 ratio is widely found.⁵ Since 9-fold co-ordination could be achieved in a compound of composition $(NH_4)_3$ ThF₇, the 4:1 stoicheiometry is unexpected in the thorium fluoride-ammonium fluoride system.

Acicular crystals of $(\rm NH_4)_4\rm ThF_8$ result when a 45% (w/w) (saturated NH₄F solution) ammonium fluoride solution is stirred for several hours at room temperature with freshly precipitated ThF₄. Larger crystals result when a warm solution is allowed to cool slowly. Excess of NH₄F floats on the denser aqueous solution and is readily removed (centrifuge). Methyl alcohol can be used to remove any NH₄F from the surfaces of the (NH₄)₄ThF₈ needles.

Crystals of $(NH_4)_4$ ThF₈ are triclinic with unit cell dimensions a = 8.59, b = 8.41, c = 7.33 Å, $\alpha = 88^{\circ} 28'$, $\beta = 95^{\circ} 46'$, $\gamma = 106^{\circ} 49'$; space group $P\overline{1}$, Z = 2, $D_c = 3.0$.

Three-dimensional X-ray diffraction data were collected by use of a single crystal orienter on a G.E.

XRD-5. The relative positions of the thorium atoms were deduced from the Patterson function. A difference Fourier phased on the refined thorium positions showed the positions of the remaining atoms, and the structure has been refined by full matrix least-squares to R = 4.2%.

In $(NH_4)_4UF_8$ the average U-F distance is 2.28 Å, with a range of 2.27 to 2.33 Å. In $(NH_4)_4ThF_8$ thorium has nine fluorine neighbours at an average distance of 2.40 Å, with a range of 2.28 to 2.47 Å. The fluorine co-ordination polyhedron around the thorium is distorted from a tricapped trigonal prism of ideal D_{3h} symmetry. The remaining fluorine lies approximately 5.04 Å from its nearest thorium neighbour. This F, which is not bonded to thorium, is surrounded by five N-atoms in approximately a square pyramidal configuration with an average N...F distance of 2.74 Å.

Differential thermal analysis shows that NH_4F is lost from $(NH_4)_4ThF_8$ less readily than from $(NH_4)_4UF_8$. The peak of the first endotherm of $(NH_4)_4UF_8$ occurs at 180° : that of $(NH_4)_4ThF_8$ occurs at 205° .

This work was sponsored by the U.S. Atomic Energy Commission.

(Received, June 17th, 1968; Com. 788.)

¹ R. A. Penneman, F. H. Kruse, R. S. George, and J. S. Coleman, Inorg. Chem., 1964, 3, 309.

² A. Rosenzweig and D. T. Cromer, Acta Cryst., in the press.

³ J. H. Burns, H. A. Levi, and O. L. Keller, Abstracts of American Crystallographic Association Meeting, August 20–25, 1967, paper M-6; R. R. Ryan and F. H. Kruse, *ibid.*, paper M-10.

⁴ D. Brown, S. F. A. Kettle, and A. J. Smith, J. Chem. Soc. (A), 1967, 1429; G. Brunton, J. Inorg. Nuclear Chem., 1967, 29, 1631. ⁵ "Phase Diagrams for Ceramists," E. M. Levin, C. R. Robbins, and H. F. McMurdie, The American Ceramic Society,

* "Phase Diagrams for Ceramists," E. M. Levin, C. R. Robbins, and H. F. McMurdie, The American Ceramic Society, Columbus, Ohio, 1964.