Direct Oxidation of Phosphines by the Bifluoride Ion

By J. F. NIXON* and J. R. SWAIN

(Chemical Laboratory, University of Sussex, Brighton, BN1 9QJ)

CURRENT interest¹⁻⁷ in pentaco-ordinate hydridofluorophosphoranes of the type $R_n PH_m F_{5-(n+m)}$, (R = alkyl, aryl), and RPF₂HX (X = R₂N, RO), prompts us to report the direct addition of potassium bifluoride to certain fluorophosphines (at 60—100°, sealed tube) to produce hexa-coordinate phosphorus salts containing phosphorushydrogen bonds.

$$(CF_3)_2 PF + HF_2^- \rightarrow (CF_3)_2 PF_3 H^- \qquad (I)$$

$$CF_3PF_2 + HF_2^- \rightarrow CF_3PF_4H^-$$
 (II)

The oxidation of trivalent to pentavalent phosphorus in these reactions is favoured by the formation of two additional strong phosphorus-fluorine bonds.

The ¹⁹F n.m.r. spectrum (reproduced below) of an acetonitrile solution of (I) confirms the proposed formulation, and rules out (Ic) of the three possible stereoisomers, since (Ic) contains non-equivalent

 CF_3 -groups. Isomer (Ia) containing trans- CF_3 groups would seem to be the most likely configuration since (Ib) would exhibit the observed spectrum

only if $J_{F(1)CF_3}$ (*cis*) and $J_{F(1)CF_3}$ (*trans*) were equal. The spectrum can be interpreted on a first order basis owing to the surprisingly large chemical shift difference, (35.8 p.p.m.), between the two types of fluorine directly bonded to phosphorus, F(1) and F(2), which are respectively *cis*- and *trans*- to hydrogen in structures (Ia) and (Ib). The following assignments may be made:

(1) two widely spaced doublets at high field for the F(1) resonance, each split into two partially overlapping nine patterns of relative intensity 1:6:16:26:30:26:16:6:1 from spin coupling with phosphorus, hydrogen, single fluorine F(2) and six equivalent fluorines of the CF₃-groups. Each nine pattern arises from overlap of two septets since $J_{F(1)F(2)}$ is exactly twice $J_{CF_3-F(1)}$;

(2) a doublet, at intermediate field, for the CF_3 -resonance split further into four overlapping 1:2:1 triplets from spin coupling with phosphorus, hydrogen, unique fluorine F(2), and two equivalent F(1) fluorines.

(3) A widely spaced doublet, at lower field, for the F(2) resonance, split into two overlapping 1:2:1 triplets of septets from coupling with phosphorus, hydrogen, two F(1) fluorines, and the six equivalent fluorines of the CF₃-groups.

The magnitude of the directly bonded J_{P-F} coupling constants are characteristic of hexa-coordinate species,^{8,9} while further confirmation for (I) comes from the ¹H n.m.r. spectrum in which the resonance of the single proton shows the expected pattern of lines. Chemical shift and spin-coupling parameters are summarised in the Table.

The direct synthesis of (II) confirms our previous suggestion^{10,11} that bifluoride ion is an intermediate in the unusual reaction between difluorotrifluoromethylphosphine and dimethylamine. We have also recently obtained (1) in the solid residue from the analogous fluorobistrifluoromethyl phosphineamine reaction.¹² All the above reactions illustrate the ease of oxidation of these phosphines as do our recently described syntheses of platinum(0) complexes PtL_4 (L = CF_3PF_2 , (CF_3)₂PF) by direct reaction between platinum(II) chloride and the phosphine.¹³ No evidence has so far been obtained for the formation of the PF₅H⁻ ion from

TABLE

Nuclear spin-spin coupling constants for (I) [in c./sec.]

$J_{\rm PF(1)}$	= 725	$J_{F(1)F(2)}$	=	25.0
$J_{PF(2)}$	= 834	$J_{\rm F(hH)}$	=	69.5;ª 70.2b
JPCF.	= 132	$J_{\mathbf{F}(2)\mathbf{H}}$	==	18-0ª
JF(1)CF.	= 12.5	JHCF.	=	9.5;a 9.5b
$J_{\mathbf{F}(2)\mathbf{CF}}$	= 15.5	$J_{\rm PH}$	=	622

Chemical shifts

$\phi_{\mathrm{F}}^{\dagger} = 94.3 \mathrm{p.p.m.}$	$\phi_{\rm F} = 58.5 \rm p.p.m$
$\phi_{\mathrm{CF}_3} \dagger = 72.7 \text{ p.p.m.}$	$\tau_{\rm H}\ddagger = 5.0 \text{ p.p.m.}$

^a from ¹⁹F spectrum; ^b from ¹H spectrum.

† Relative to CCl₃F; ‡ Relative to external Me₄Si.

¹ R. A. Goodrich and P. M. Treichel, Inorg. Chem., 1968, 7, 694.

- ² F. Seel, W. Gombler, and K. H. Rudolph, Z. Naturforsch., 1968, 23b, 387.
 ³ S. Z. Ivin, K. V. Karavanov, and G. I. Drozd, U.S.S.R. Pat. 172,795, (Chem. Abs., 1966, 64, 756).
 ⁴ G. I. Drozd, S. Z. Ivin, V. V. Sheluchenko, B. I. Tetel'baum, G. M. Luganskii and A. D. Varshavskii, Zhur. obshchei Khim., 1967, 37, 1343.

 - ⁶ R. R. Holmes and R. N. Storey, *Inorg. Chem.*, 1966, 5, 2146. ⁶ G. I. Drozd, S. Z. Ivin, V. N. Kulakova, and V. V. Sheluchenko, *J. Gen. Chem.* (U.S.S.R.), 1968, 38, 576.

 - ⁷ Zh. M. Ivanova and A. V. Kirsanov, Zhur. obshchei. Khim., 1961, 31, 3991.
 ⁸ R. Schmutzler and G. S. Reddy, Angew. Chem., 1965, 77, 530, and Inorg. Chem., 1966, 5, 164.
 ⁹ E. L. Muetterties and W. Mahler, Inorg. Chem., 1965, 4, 119.

 - ¹⁰ R. G. Cavell and J. F. Nixon, Proc. Chem. Soc., 1964, 229.
 - ¹¹ J. F. Nixon and R. G. Cavell, J. Chem. Soc., 1964, 5983.
 - ¹² J. F. Nixon and J. R. Swain, unpublished results.
 - ¹³ J. F. Nixon and M. D. Sexton, Inorg. Nuclear Chem. Letters, 1968, 4, 275.

reactions between bifluoride ion and the parent trifluorophosphine.

FIGURE. 94-1 Mc./sec. ${}^{19}F$ n.m.r. spectrum of the $(CF_3)_2PF_3H^-$ anion (I). Figures are in c./sec., to high field of CCl₃F.

Note added in proof: Recently we have been able to synthesise (I) and (II) at room temperature using MeCN as solvent.

(Received, June 4th, 1968; Com. 727.)