Ratio-dependent Products from Xanthophanic Enol and Magnesium Methoxide: Reaction Control by Substrate-chelation

By L. CROMBIE,* M. ESKINS, and D. E. GAMES

[Department of Chemistry, University College (University of Wales), Cathays Park, Cardiff]

PRODUCTS which form when certain poly- β carbonyl systems (frequently masked as pyrones) are treated with sodium methoxide, or limited amounts of magnesium methoxide, arise from a cyclisation basically different from that involved with an excess of magnesium methoxide.^{1,2} Explanation, in terms of magnesium chelation, which leads to modification of the geometry and reactivity of the substrate, has been proposed.^{1,2} We report an examination of the dimethyl xanthophanic enol (I; without magnesium) system which shows clearly how dependent the nature and composition of the products are upon the magnesium methoxide level.

Tables 1 and 2 record the composition of crystalline material formed after 20 hr. from differing initial molar proportions of base at 20° (compiled by fractional crystallisation and quantative thin-layer analysis of mixed crops). Table 1 illustrates the relative insensitivity towards sodium methoxide concentration, the major product after the first mole is neutralised being the Michael-aldol product (II) with a trace of its coumarin (III).

The more intricate response (Table 2) towards initial magnesium methoxide concentration may be explained as follows. At the 0.5:1 mol. level, magnesium is bound as the chelate from (I) or as (VII) and xanthophanic enol is recovered on workup. With a 1:1 ratio, and the availability of methoxide ion, the pyrone is opened and ultimate irreversible base-catalysed cyclisation to the isophthalate (III) is the major course, probably via species such as (VIIIa or b). As the initial magnesium methoxide concentration moves through the range 1:1 to $2\cdot 5:1$ there is declining formation of (III), which eventually disappears. Products (IVa, b; R=H) and (IVb; R=Me) which increase and then disappear in roughly this range also appear to be produced by reactions connected with the aldol pathway.

Accompanying the decline of (III) is the emergence of a new compound, shown to be an isomer (V) of xanthophanic enol. The yellow compound m.p. 149-150° (C₁₆H₁₆O₈, M 336.0843 \pm 15) had v_{max} (mull) 1757 (2-acyl pyrone), 1727 (pyrone ester), 1653 (chelated ester), and 1612 cm.⁻¹ (pyrone and conj. C=C). It absorbed at shorter wavelength than (I) and had λ_{max} (acid ethanol) 258 (6,800) and 372 (14,000) nm. The n.m.r. spectrum showed resonances at τ 7.63 (3H, enolised acetyl), 7.25 (3H, pyrone methyl), 6.05, 6.08 (6H, two CO₂Me), 1·27 (1H, pyrone 4-hydrogen), -4·33 (1H, chelated hydroxyl), 2.30, 2.20 (2H, AB quartet, J 16 Hz, E-olefin³). Treatment with an excess of magnesium methoxide converted (V) into the known compound¹ (VI).

As the initial concentrations of magnesium methoxide are increased, more substrate becomes blocked with two stable chelate rings (IXa).

24:1

TABLE 1 Products from dimethyl xanthophanic enol and sodium methoxide

		-			
Mole ratio base : ester	1:1	2:1	3:1	6:1	12:1

· · · · · · · · · · · · · · · · · · ·		-	•		-		
Xanthophanic enol (I)		99в	3540	20 - 25	<1	<1	<1
Isophthalate (II)		<1	6065	75 - 80	99	99	99
Isophthalate (III)			trace	trace	trace	trace	trace
Crystalline material %	••	94	47	58	51	56	67
^a % Based on crystalline pr	roduct:	solvent. n	ethanol-benze	ene (1 · 9) at 20	•		

101-benzene (1:9) at 20°.% Based on crystalline product: solvent,

TABLE 2

Products	from	dimethyl	xantho	bhanic	enol	and	magnesium	methoxide
	,			p				

Mole ratio base : ester		0.5:1	0.75:1	1:1	1.5:1	2:1	2.5:1	3:1	6:1	12:1
Xanthophanic enol (I)		100ª	95	5-10	<1	nil	nil	nil	nil	nil
Isophthalate (III)		nil	5	80 - 85	50	35 - 40	5	nil	nil	nil
Isophthalate $(IV; R=H)$		\mathbf{nil}	nil	< 5	10 - 15	10	trace	nil	nil	nil
Isophthalate (IVb; $R = Me$)	• •	nil	nil	trace	trace	trace	nil	nil	nil	nil
Pyrone (V)		nil	nil	< 5	35 - 40	50 - 55	65 - 70	35 - 40	5	nil
Resorcinol (VI)		nil	nil	nil	nil	nil	25 - 30	60 - 65	95	100
Crystalline material %		92	78	66	59	48	55	49	68	89
a Ao Toblo 1										

^a As Table 1.

This preserves the chain from destruction by the Michael-aldol pathway to (III). The 3,4-double bond is envisaged as stereomutatable ($E \rightleftharpoons Z$ mechanism available) but the 5,6-geometry in (IXa) is necessarily fixed Z as opposed to E in (I) and the chain stabilises itself on release from magnesium as (V) rather than reverting to (I).

Increasing the magnesium methoxide: xanthophanic enol ratio still more now allows irreversible disposal of the bischelate by the Claisen condensation (IX) to give the resorcinol type $(VI)^1$ which ultimately (12 mol. magnesium methoxide) is the only product, isolated in 89% yield.

(Received, June 11th, 1968; Com. 768.)

¹ L. Crombie, D. E. Games, and M. H. Knight, *Tetrahedron Letters*, 1964, 2313; Chem. Comm., 1966, 355; J. Chem. Soc., 1967, 763, 773.

² L. Crombie and A. W. G. James, Chem. Comm., 1966, 357; cf. T. Money, J. L. Douglas, and A. I. Scott, J. Amer. Chem. Soc., 1966, 88, 624.

³ For specification of geometrical isomers see J. E. Blackwood, C. L. Gladys, K. L. Loening, A. E. Petrarca, and J. E. Rush, J. Amer. Chem. Soc., 1968, 90, 509.