A Gas-phase Electron-diffraction Investigation of Trimethylenemethaneiron Tricarbonyl, $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Fe}(\mathrm{CO})_{3}$

By Arne Almenningen, Arne Hafland,* and Kåre Wahl
(Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway)

Trimethylenemethaneiron tricarbonyl has been synthesized by Emerson et al. ${ }^{1}$ We report the results of a gas-phase electron-diffraction investigation of the compound.

The scattering pattern from the gas at about 50° was recorded on the Oslo electron-diffraction unit. ${ }^{2}$ The final modified molecular-intensity points extended from $s=2.50$ to $s=38.75 \AA^{-1}$. [$s=(4 \pi \sin \theta) / \lambda$, where θ is half the scattering angle and λ the electron wavelength].

It was clear from the experimental o.r.d. curve that the three distances $\mathrm{Fe}-\mathrm{C}(5), \mathrm{Fe}-\mathrm{C}(6)$, and $\mathrm{Fe}-\mathrm{C}(7)$ were essentially equal. Hence the kind of valence tautomerism discussed by Emerson et al. could be ruled out.

There are two possible molecular models of $C_{3 v}$ symmetry. In one, the six carbon atoms form a
trigonal prism around the iron atom, in the other (shown in the Figure) they form a trigonal antiprism. It was found that the prismatic model was incompatible with the experimental data.

The antiprismatic $C_{3 v}$ model was refined by least-squares calculations ${ }^{3}$ on the intensity data. The most important structure parameters and their standard deviations are given in the Table.

The $\mathrm{Fe}-\mathrm{C}(4)$ bond is found to be significantly shorter than the distance from the iron atom to the four carbon atoms in the cyclobutadiene ring of tetraphenylcyclobutadiene irontricarbonyl ${ }^{3}$ (2.067 $\pm 0.012 \AA$) while the $\mathrm{Fe}-\mathrm{C}(5)$ distance is significantly longer. In fact the $\mathrm{Fe}-\mathrm{C}(4)$ distance is roughly equal to the two $\mathrm{Fe}-\mathrm{C}$ (alkyl) distances found in $\mathrm{H}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{8}\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)^{4}(1.946 \pm 0.007 \AA)$.

However, since the bonding in the $\mathrm{FeC}\left(\mathrm{CH}_{2}\right)_{3}$

Figure

Structure parameters for trimethylenemethane

 irontricarbonyl
A

$\mathrm{Fe}-\mathrm{C}(1)=1.810(0.003)$
$\mathrm{Fe}-\mathrm{C}(4)=1.938(0.005)$ $\mathrm{Fe}-\mathrm{C}(5)=2 \cdot 123(0.005)$ $\mathrm{C}(1)-\mathrm{O}=1.153(0.002)$ $\mathrm{C}(4)-\mathrm{C}(5)=1.437(0.003)$ $\mathrm{C}(5)-\mathrm{H}=1.111(0.009)$
$\angle \mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)=76 \cdot 4^{\circ}\left(0 \cdot 2^{\circ}\right)$
$\angle \mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(\mathrm{l})=118 \cdot 4^{\circ}\left(1 \cdot 3^{\circ}\right)$
(The angles have not been corrected for shrinkage.)
fragment is almost certainly highly strained, we believe it would be unwise to draw any conclusions regarding the relative strength of the $\mathrm{Fe}-\mathrm{C}(4)$ and $\mathrm{Fe}-\mathrm{C}(5)$ bonds from these comparisons.

We are indebted to Professor Emerson for a sample of the compound.
(Received, June 24th, 1968; Com. 829.)
${ }^{1}$ G. F. Emerson, K. Ehrlich, W. P. Giering, and P. C. Lauterbur, J. Amer. Chem. Soc., 1966, 88, 3172.
${ }^{2}$ O. Bastiansen, O. Hassel, and E. Risberg, Acta Chem. Scand., 1955, 9, 232.
${ }^{3}$ R. P. Dodge and V. Schomaker, Acta Cryst., 1965, 18, 614.
${ }^{4}$ A. A. Hock and O. S. Mills, Acta Cryst., 1961, 14, 139.

