Raman Spectrum and Structure of Molten Indium Dichloride

J. H. R. CLARKE and R. E. HESTER*

(Department of Chemistry, University of York, Heslington, York)

PHASE studies of the indium-chlorine system have been interpreted as indicating the existence in the solid state of a compound $InCl_2^{1,2}$ of suggested¹ structure $In^{II}n^{III}Cl_4$, though no conclusive evidence for this is available. The related galliumchlorine system similarly yields a compound $GaCl_2$, whose structure has unambiguously been established as $Ga^IGa^{III}Cl_4$ in both solid³ and liquid⁴ states. We have obtained Raman spectra of the InCl₂ system, by use of He-Ne laser excitation techniques to avoid problems arising from the straw-yellow colour of the molten salt. The structural information represented by these spectra parallels that obtained previously for molten GaCl₂.

This study was supported by a grant from the Office of Saline Water, U.S. Department of the Interior.

Molten InCl ₂ (350°)	Raman bands, cm. ⁻¹ Molten InCl ₃ ,KCl (350°)	InCl ₄ - in ether ⁵ (ca. 25°)	Assignments for T _d symmetry	Approximate description
317s,p	320s,p	321 s,p	$\nu_1(a_1)$	vs(In-Cl)
91m,dp	87m,dp	89m,dp	ν ₂ (e)	δ (ClInCl)
349w,dp	346w,dp	33 7w,dp	$\nu_3(f_2)$	va(In-Cl)
116m,dp	114 m,dp	112 m,dp	$\nu_4(f_2)$	δ (Cl ₃ In)

Raman spectra of InCl₄-

s = strong, m = medium, w = weak, p = polarised, dp = depolarised.

The spectrum of InCl₂ was found to be invariant from just above the melting point (268°) up to 500°, indicating a definite and thermodynamically stable chemical species. The appearance of the molten salt spectrum (Figure) is characteristic of tetrahedral species, the strongest band at 317 cm.⁻¹ being polarised and all other bands being much weaker and depolarised. These polarisation properties also enabled the strongly overlapping 317 and 349 cm.⁻¹ bands to be resolved (see Figure). The spectrum is effectively identical with that given by a molten equimolar mixture of InCl₃ and KCl, which is expected to have the structure K+InCl₄-, and with that found for InCl₄- in ether solution.⁵ From the comparison of spectra made in the Table and Figure it is clear that the same species is responsible for each of them, namely the tetrahedral InCl₄- ion. The band assignments given in the Table follow from this. The Figure also shows the strongest Raman band given by solid InCl₂, at room temperature and just below its melting point. This band frequency, at 313 cm.-1, is close to that of the strongest $InCl_4$ - band, suggesting that this species persists in the solid state.

In conclusion, the Raman evidence establishes that InCl₂ in the liquid state, and probably also in the solid, has the structure $In+InCl_4$ -.

FIGURE. Raman spectra of the InCl₄- ion in molten InCl₈, KCl, molten InCl₂, and solid InCl₂.

(Received, June 18th, 1968; Com. 807.)

- ² V. N. Fadeev and P. I. Fedorov, Zhur. neorg. Khim., 1964, 9, 378.
 ³ G. Garton and H. M. Powell, J. Inorg. Nuclear Chem., 1957, 4, 84.
 ⁴ L. A. Woodward, G. Garton, and H. L. Roberts, J. Chem. Soc., 1956, 3723.

- ⁶ L. A. Woodward and M. J. Taylor, J. Chem. Soc., 1960, 4473.

¹ J. R. Chadwick, A. W. Atkinson, and B. G. Huckstepp, J. Inorg. Nuclear Chem., 1966, 28, 1021.