The Structure of the Macrolide Antibiotic Picromycin

By R. W. RICKARDS* and ROGER M. SMITH

(Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600)

and J. MAJER

(Institute of Microbiology, Czechoslovak Academy of Sciences, Prague)

PICROMYCIN,¹⁻³ identical with albomycetin⁴ and amaromycin,⁵ has been assigned structure (I),^{6,7} or (II).⁷ If (II), picromycin would be stereoisomeric with methymycin (II),^{7,8} although an attempt to relate them failed.⁹

The published evidence,1,6,7,10 however, is not in complete accordance with either formula (I) or (II). Mild treatment of picromycin with acid or base yielded the anhydro-aglycone, cromycin, which it was suggested^{6,7b} was the dienone (III) arising by direct β -elimination of desosamine from structure (I) or by elimination involving a hydride shift from structure (II). Structure (III) for cromycin does not explain the production of 0.9mole of carbon dioxide on refluxing with aqueous barium hydroxide.^{10c} Furthermore, the i.r. spectrum (in KBr) of dihydrocromycin, which was prepared from dihydropicromycin and therefore had the 8,9-double bond reduced, showed in addition to maxima at 1723 (unconjugated lactone), 1666, and 1635 cm.⁻¹ ($\alpha\beta$ -unsaturated ketone), a further intense maximum at 1701 cm.-1 the origin of which was not clear.7a

Our material, produced from S. griseoflavus,^{3a} was identical with authentic picromycin. Mass spectroscopy showed a molecular ion at m/e 525

not at m/e 469 (C₂₅H₄₃NO₇) as required for structure (I) or (II). This corresponds to $C_{28}H_{47}NO_8$, in excellent agreement with published analyses.^{1,7a} Kuhn-Roth analyses,^{7a,10b} when applied to this new formula, indicate 7 C-methyl groups and suggest that the extra C₃H₄O moiety is present as an additional propionate biosynthetic unit,¹¹ -CO·CHMe-, overlooked in previous work. The decarboxylation mentioned above implies a β -ketolactone, and this was confirmed spectroscopically. The ¹H n.m.r. spectrum of picromycin (in CDCl₃) shows resonances centred at τ 6.10 (1H, 1:3:3:1 q, J 7.2 c./sec.) and 8.52 (3H, 1:1 d, J 7.2 c./sec.) corresponding¹² to the methine and methyl protons of the system $-OCO \cdot CH(CH_3)CO$, which collapse on appropriate double irradiation. The addition of alkali to picromycin (in EtOH) immediately produces a u.v. absorption maximum at 294 m μ (log ϵ 4.26) due to the enolate anion $-OCO \cdot CMe = C - O^-$ (cf. ref. 13) whilst the conjugated ketonic maximum at 224 m μ (log ϵ 4.01) remains unchanged. Dihydropicromycin affords a similar alkaline maximum at 293 m μ (log ϵ 4.36).

Reduction of cromycin with an excess of sodium borohydride afforded a product in which the only

carbonyl function apparent from the i.r. or u.v. spectrum was a saturated lactone, but which could be re-oxidised with manganese dioxide to cromycin in good yield.^{7b} This necessitates that both ketones of cromycin are conjugated, and taken in conjunction with other published evidence^{1,6,7,10} leads to structure (V) for cromycin. In agreement with this structure, cromycin shows, in a variety of i.r. media, 6,7a,10c only unconjugated lactone and conjugated ketone functions [e.g. vmax (CCl₄) 1740, 1680, and 1635 cm.⁻¹], together with conjugated ketone u.v. absorption $[\lambda_{max} \text{ (EtOH) } 227 \text{ m}\mu \text{ (log }\epsilon$ 4.39)] almost twice as intense as that of picromycin.

Dihydrocromycin, v_{max} (in CCl₄) 1735 (lactone), 1710 (ketone), 1685, and 1635 cm.⁻¹ (conjugated ketone), from its mode of preparation must have the 10,11-double bond of formula (V) reduced. The conjugated double bond formed by elimination of desosamine and responsible for the u.v.

maximum (in EtOH) at 232 m μ (log ϵ 4.19) must occupy the 4,5-position as in cromycin (V), since ozonolysis and alkaline hydrolysis gave pentane-2,3-dione, characterised as 2-ethyl-3-methylquinoxaline¹⁴ after reaction with o-phenylenediamine. Hemiacetal formation occurs readily between the C(12)-hydroxy and the C(9)-carbonyl groups of dihydrocromycin, subsequent dehydration then permitting the observed formation^{7a} of laevulinic acid on ozonolysis followed by hydrolysis and periodate oxidation.

Provided that hydride shifts have not occurred during the formation of the 4,5-double bonds of both cromycin and dihydrocromycin, then picromycin must have the structure (IV).

We thank Professor H. Brockmann and Dr. W. Keller-Schierlein for specimens of authentic picromycin.

(Received, June 18th, 1968; Com. 801.)

¹ H. Brockmann and W. Henkel, Naturwiss., 1950, 37, 138.

² R. B. Woodward, "Festschrift Arthur Stoll", Birkhauser, Basel, 1957, p. 524; Angew. Chem., 1957, 69, 50; M.

Berry, Quart. Rev., 1963, 17, 343. ⁸ (a) Z. Vaněk, L. Doležilová, and Z. Řeháček, Čslká Microbiol., 1958, 3, 255; (b) R. Hütter, W. Keller-Schierlein, and H. Zähner, Arch. Mikrobiol., 1961, 39, 158, and refs. therein; (c) S. E. DeVoe, H. B. Renfroe, and W. K. Hausmann, Antimicrobial Agents and Chemotherapy, 1963, 125.

⁴ B. Takahashi, J. Antibiotics, Tokyo, Ser. A, 1954, 7, 149.

⁵ T. Hata, Y. Sano, H. Tatsuta, R. Sugawara, A. Matsumae, and K. Kanamori, J. Antibiotics, Tokyo, Ser. A, 1955, 8, 9; H. Ogura, A. Otagoshi, Y. Sano, and T. Hata, Chem. and Pharm. Bull. (Japan), 1967, 15, 682.

⁶ H. Brockmann and R. Öster, Chem. Ber., 1957, 90, 605.

⁷ R. Anliker and K. Gubler, Helv. Chim. Acta, (a) 1957, 40, 119; (b) 1957, 40, 1768.
⁸ C. Djerassi and J. A. Zderic, J. Amer. Chem. Soc., 1956, 78, 6390.
⁹ C. Djerassi, O. Halpern, D. I. Wilkinson, and E. J. Eisenbraun, Tetrahedron, 1958, 4, 369.

¹⁰ (a) H. Brockmann and W. Henkel, Chem. Ber., 1951, 84, 284; (d) H. Brockmann, H. Genth, and R. Strufe, Chem. Ber., 1952, 85, 426; (c) H. Brockmann and R. Strufe, Chem. Ber., 1953, 86, 876; (d) H. Brockmann, H. B. König, and R. Oster, Chem. Ber., 1954, 87, 856; (e) H. Brockmann and R. Oster, Naturwiss., 1955, 42, 1955.

¹¹ Cf. J. W. Corcoran and M. Chick, in "Biosynthesis of Antibiotics", ed. J. F. Snell, Academic Press, New York, 1966, p. 159, and refs therein.

¹⁹ J. L. Burdett and M. T. Rogers, J. Amer. Chem. Soc., 1964, 86, 2105; Canad. J. Chem., 1965, 43, 1516.
¹³ F. N. McMillan, Analyt. Chem., 1956, 28, 1532.

¹⁴ I. M. Heilbron, E. R. H. Jones, P. Smith, and B. C. L. Weedon, J. Chem. Soc., 1946, 54.