Characterisation of Methylpolygermanes

By F. GLOCKLING* and J. R. C. LIGHT (Chemistry Department, The University, Durham)

and J. WALKER

(Petrochemical and Polymer Laboratories, I.C.I., Runcorn)

CATENATED ORGANO-DERIVATIVES of the Group IVB elements are of interest in relation to their chemical reactivity and spectroscopic properties.^{1,2} Both cyclic $(Me_2Ge)_n$ (n = 4 or 6) and non-cyclic methylpolygermanes have been described.^{3,4}

We have used two reactions to form methylpolygermanes: (i) $\text{GeI}_2 + \text{excess Me}_3\text{Al}$ in hexane at 20° and (ii) $\text{Me}_3\text{GeBr} + \text{K}$ at 140°. Both yield, by preparative v.p.c., compounds containing up to five germanium atoms together with less volatile compounds, the highest positively identified from its mass spectrum being $Me_{22}Ge_{10}$. In addition, reaction (i) produces minor products resulting from the growth of alkyl chains (e.g. Me_9PrGe_4); these are probably formed from $\bigcirc GeCH_2Al(H)$ - intermediates. In reaction (ii) C-H bonds are cleaved, leading to polygermanes of the type $\bigcirc GeCH_2Ge \subline$. The problem of characterising these low-yield

CHEMICAL COMMUNICATIONS, 1968

Compoun d			Me ₃ Ge	Me_2Ge	MeGe	GeCH ₂	CH ₃ (Et)
Me ₄ Ge		• •	7.023				
Me ₆ Ge ₂	••		6.886				
Me ₃ GeGe(Me) ₂ CH ₂ GeMe ₃	••		6.945	6.845		7.123	
			6.864				
(Me ₃ Ge) ₃ GeMe			6.768		6.691		
(Me,Ge),Ge(Me)GeMe,Et			6.750	6.795	6.709	6.209	6 ·0 36
(Me ₃ Ge) ₄ Ge			6.895				
(Me.Ge).*Ge(Me)Ge(Me).GeMe.b			6·759*	6.677	6.686		
			6.800b				

Chemical shifts[†] in methylpolygermanes

 \dagger 1—5% benzene solutions; p.p.m. upfield of benzene.

products (often <0.5%) is acute, especially for isomeric compounds. Mass spectrometry establishes molecular formulae and distinguishes between certain isomers (e.g. Me₉PrGe₄ and Me₈Et₂Ge₄; Me₇EtGe₃ and Me₃GeCH₂Ge₂Me₅) by differences in their fragmentation patterns. Unambiguous structural assignments can then be made from their ¹H n.m.r. spectra at 220 Mc./sec., since at this resolution differences in the chemical shifts of Me₃Ge, Me₂Ge, and MeGe protons are sufficient for accurate integration. In general, the methyl resonance moves up-field in the order $Me_3Ge > Me_2Ge > MeGe$, and symmetry factors are apparent in influencing chemical shifts. In a similar way the position of an ethyl or methylene group in a methylpolygermane chain can be determined (see Table).

The reaction between GeCl₄ and Me₃GeLi yields the crystalline tetrakis-derivative (Me₃Ge)₄Ge, together with Me₁₈Ge₈ [probably (Me₃Ge)₆Ge₂]. All methylpolygermanes examined are stable in air and are of high thermal stability.

(Received, June 18th, 1968; Com. 803.)

¹ R. West, F. A. Kramer, E. Carberry, M. Kumada, and M. Ishikawa, J. Organometallic Chem., 1967, 8, 79.

- ² H. Gilman and R. L. Harrell, J. Organometallic Chem., 1967, 9, 67.
- ³O. M. Nefedov and S. P. Kolesnikov, Izvest. Akad. Nauk. S.S.S.R., Ser. khim., 1966, 201.
- ⁴ F. Glockling and J. R. C. Light, J. Chem. Soc. (A), 1967, 623.