Interconversion of Mesoionic Ring Systems. The Conversion of Anhydro-2-aryl-5-hydroxy-3-methylthiazolium Hydroxides into Anhydro-2-aryl-4-mercapto-1-methyl-3-phenylimidazolium Hydroxides

By K. T. Potts* and D. N. Roy
(Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181)

Interconversion of mesoionic ring systems offers both an important route to those systems which cannot readily be obtained by synthesis, as well as information regarding their relative reactivities. One method of effecting such interconversion, depending on a ring opening-ring closure sequence, has been demonstrated. ${ }^{1}$ Treatment of anhydro-5-hydroxy-3-methyl-2-phenyl-1,3,4-oxadiazolium hydroxide with hydrogen sulphide in pyridinechloroform was shown to give 1-methyl-1-thiobenzoyl hydrazine which underwent cyclization with phosgene to anhydro-5-hydroxy-3-methyl-2-phenyl-1,3,4-thiadiazolium hydroxide. ${ }^{2}$

We report a second method for effecting interconversion of mesoionic systems. Treatment of anhydro-5-hydroxy-3-methyl-2-phenylthiazolium hydroxide ($\mathrm{I} ; \mathrm{R}=\mathrm{Ph}$) with phenyl isothiocyanate in hot benzene readily gave anhydro-2,3-diphenyl-4-mercapto-1-methylimidazolium hydroxide (II; $\mathrm{R}=\mathrm{Ph}$) [yellow flakes (28%) m.p. 231- 232°; $\lambda_{\max }(\mathrm{MeOH}) 205,235$, and $325 \mathrm{~m} \mu(\log \epsilon 4 \cdot 48,4 \cdot 20$, and $3 \cdot 77$) ; $\nu_{\max }(\mathrm{KBr}) 1600,1500,1475$, and 1142 $\mathrm{cm} .^{-1}$; n.m.r. $\left(\mathrm{CDCl}_{3}\right) \tau 6 \cdot 35(\mathrm{~s}, \mathrm{~N}-\mathrm{Me}), 3 \cdot 10(\mathrm{~s}, 5-\mathrm{H})$, and $2.60-2.70(\mathrm{~m}, 10$, aromatics) ; $m / e 266$ (41% $\left.M^{+}\right)$] which yielded a methiodide (III; $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}$) [prisms, m.p. 216-217 ${ }^{\circ}$; $\lambda_{\max }(\mathrm{MeOH}) 208,222$, and $260 \mathrm{~m} \mu(\log \epsilon 4 \cdot 57,4 \cdot 50$, and 3.98$) ; \nu_{\max }(\mathrm{KBr})$ $1500 \mathrm{~cm} .^{-1}$; n.m.r. $\left(\mathrm{CDCl}_{3}\right) \tau 7 \cdot 60\left(\mathrm{~s}, \mathrm{~S}-\mathrm{Me}_{3}\right), 6.05$ (s, N-Me), 2.55-2.65 (m, 10, aromatics), and 2.05 ($\mathrm{s}, 5-\mathrm{H}$) ; $\left.m / e 266\left(74 \%[M-\mathrm{Me}]^{+}\right)\right]$.

Similarly, (I; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) yielded (II; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) [yellow prisms (33%), m.p. $229-$ $231^{\circ} ; \lambda_{\text {max }}(\mathrm{MeOH}) 202,236$, and $343 \mathrm{~m} \mu(\log \epsilon 4.03$, 3.99 , and 3.49$)$; $\nu_{\max }(\mathrm{KBr}) 1500$ and $1150 \mathrm{~cm} .^{-1}$; n.m.r. ($\left.{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulphoxide) $\tau 6.40(\mathrm{~s}, \mathrm{~N}-\mathrm{Me})$, $3 \cdot 10(\mathrm{~s}, 5-\mathrm{H})$, and $2.55-2.72(\mathrm{~m}, 9$, aromatics); $\left.m / e 300\left(32 \% M^{+}\right)\right]$which also readily formed a methiodide (III; $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) [prisms, m.p. $189-191^{\circ} ; \lambda_{\max }(\mathrm{MeOH}) 224$ and $265 \mathrm{~m} \mu(\log \epsilon$ 3.81 and 3.62); $\nu_{\max }(\mathrm{KBr}) 1500 \mathrm{~cm} .^{-1}$; n.m.r. $\left(\mathrm{CDCl}_{3}\right) \tau 7.58(\mathrm{~s}, \mathrm{~S}-\mathrm{Me}), 6 \cdot 00(\mathrm{~s}, \mathrm{~N}-\mathrm{Me}), 2 \cdot 10-2 \cdot 50$ $(\mathrm{m}, 9$, aromatics), and $2 \cdot 00(\mathrm{~s}, 5-\mathrm{H}) ; m / e 300(64 \%$
[$M-\mathrm{Me}]^{+}$)]. Ready formation of a methiodide from (II) with the above characteristics \dagger eliminates structure (IV) for these products.

Phenyl isothiocyanate has been shown ${ }^{3}$ to undergo cyclo-addition reactions with 1,3-dipolar systems and this present reaction is analogous to
the 1,3 -dipolar cyclo-addition with an acetylenic dipolarophile reported. ${ }^{4}$

We thank the U.S. Army Medical Research and Development Command for financial support.
(Received, June 24th, 1968; Com. 836.)
\dagger All products obtained gave satisfactory analytical data and their mass spectral fragmentation patterns were consistent with the assigned structures.
${ }^{1}$ A. R. McCarthy, W. D. Ollis, and C. A. Ramsden, Chem. Comm., 1968, 499.
${ }^{2}$ See also K. T. Potts and C. Sapino, jun., Chem. Comm., 1968, 672.
${ }^{3}$ R. Huisgen and A. Eckell, Tetrahedron Letters, 1960, 5; R. Huisgen, Angew. Chem. Internat. Ed., 1963, 2, 565, 633; R. Huisgen, R. Grashey, J. M. Vernon, and R. Kunz, Tetrahedron, 1965, 21, 3311; 1966, 22, 2400; J. E. Baldwin, G. V. Kaiser, and J. A. Romersberger, J. Amer. Chem. Soc., 1964, 86, 4509; 1965, 87, 4114; J. E. Baldwin, J. Org. Chem., 1967, 32, 2438.
${ }^{4}$ K. T. Potts and D. N. Roy, preceding Communication.

