Some New Features in the Flash Photolysis of Chlorine Dioxide

By N. BASCO* and S. K. DOGRA

(Chemistry Department, University of British Columbia, Vancouver 8, Canada)

In their study of the isothermal flash photolysis of ClO_2 , Lipscomb, Norrish, and Thrush¹ showed that, following the primary photolysis

$$ClO_2 + h_\nu \rightarrow ClO + O$$
 (1)

vibrationally excited oxygen was produced in the reaction

$$O + ClO_2 \to O_2^* (v \ll 8) + ClO \tag{2}$$

The half-life of $O_2^*(v = 6)$ (ca. 200-700 µsec.) was inversely proportional to the initial ClO₂ pressure and was essentially independent of the overall percentage decomposition of the ClO₂ or the pressure of the moderator (Ar, N₂). It was concluded that ClO₂ and ClO are approximately equally efficient at deactivating O₂* and that a value $k_3 = 1 \times 10^8$ l.mole⁻¹ sec.⁻¹ could be assigned to the rate constant for the process

$$O_2^*(v = 6) + ClO(ClO_2) \rightarrow O_2^*(v = 5) + ClO(ClO_2) \quad (3)$$

For the decay of ClO, second-order plots were linear at all flash energies, the slope, however, increased to a limiting value as the flash energy increased. Thus the rate constant, k_4 , for the reaction

$$2\text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2 \tag{4}$$

varied from $1.9 \times 10^7 \text{ l.mole}^{-1} \text{ sec.}^{-1}$ at the lowest energy to $6.2 \times 10^7 \text{ l.mole}^{-1} \text{ sec.}^{-1}$ for energies in excess of 1000 J, the latter value being adopted. The molar extinction coefficient, ϵ , of ClO at 2577 Å was calculated by assuming that the [ClO] (extrapolated to zero time) could be equated to the decrease in $[ClO_2]$. The values obtained also varied with flash energy from 690 l.mole⁻¹ cm.⁻¹; at the highest energy to a near constant value of *ca*. 1100 l.mole⁻¹ cm.⁻¹ for energies < 400 J.

A value of $2\cdot 4 \times 10^7$ l.mole⁻¹ sec.⁻¹ for k_4 was obtained from the flash photolysis of Cl₂O,² while other workers^{3,4} produced ClO in a flow system from atomic chlorine and ClO₂ and found $k_4 = 1\cdot 4 \times 10^7$ l.mole⁻¹ sec.⁻¹, $\epsilon = 1270$ l.mole⁻¹ cm.⁻¹. Porter and Wright⁵ found k_4/ϵ from the decay of ClO in the chlorine and oxygen system from which $k_4 = 4\cdot 8$ or $2\cdot 6 \times 10^7$ l.mole⁻¹ sec.⁻¹ depending on the value of ϵ adopted.

We have reinvestigated the flash photolysis of ClO_2 and Cl_2O and our results reveal several new features of interest which suggest a more complete mechanism for the flash photolysis of ClO_2 and which serve to explain the above differences in the results of previous workers.

Chlorine dioxide was prepared,⁶ distilled under reduced pressure, and stored at the temperature of liquid nitrogen. Argon (99.998%) was passed through a cold trap.

Mixtures of ClO_2 (0·1—0·5 mm.) with argon (75—500 mm.), sometimes containing in addition Cl_2 , Cl_2O , or other gases, were flash photolysed with energies between 150 and 1000 J in a 50 cm. quartz or Pyrex reaction vessel using various light filters. The absorption spectra were recorded on Ilford HP 3 plate using a 3·4 m. grating spectrograph with a plate factor of 5 Å mm.⁻¹.

We observe the production of vibrationally excited oxygen, O_2^* , in levels up to v'' = 14 (?15), *i.e.* up to the limit allowed by the exothermicity of reaction (2), rather than up to v'' = 8

At low flash energies our results are otherwise in agreement with those of Lipscomb *et al.*,¹ with similar values of k_3 and k_4 and ϵ (*ca.* 1100 l.mole⁻¹ cm.⁻¹). As expected, for O₂*(v'' = 12), a somewhat higher value of k_3 was obtained.

At high flash energies, two important new features were observed. Firstly, a pronounced departure from linearity occurs in the second-order plot of $[ClO]^{-1} vs$. time at delay times below ca. 50 μ sec., the initial decay of ClO being very much more rapid. The values of the extinction coefficient for ClO, obtained from linear extrapolations of the second-order plots, *i.e.* ignoring experimental points below 50 μ sec., were very much lower (ca. 700 l.mole⁻¹ cm.⁻¹). The values of ϵ obtained by extrapolation of the experimental results below 50 μ sec. were, however, in approximate agreement with the low flash-energy values.

The second feature was the dramatic decrease in the half-life of O_2^* from *ca*. 550 µsec. at low flash energies to *ca*. 15 µsec. at high flash energies. At high energies, the half-life of O_2^* was increased by the presence of Cl_2O in the ClO_2 -Ar mixture, only the ClO_2 being photolysed. At low flash energies, the rate of decay of O_2^* was slightly increased when Cl_2 was present, but with a filter to prevent appreciable photolysis of the chlorine. A much greater increase in the decay rate was observed when, in the absence of this filter, a larger degree of photolysis of the Cl_2 occurred.

The difference between the experimental results at low and high flash energies can be explained by the reactions:

$$O + ClO \rightarrow O_2 + Cl$$
 (5)

$$\mathrm{Cl} + \mathrm{O}_{2}^{*}(v = n) \rightarrow \mathrm{Cl} + \mathrm{O}_{2}^{*}(v < n)$$
 (6)

$$O + O_2^*(v = n) \to O + O_2^*(v < n)$$
 (7)

The relative importance of reactions (2) and (5) depends, of course, on the ratio k_2/k_5 , which is given as *ca*. 4 by Clyne and Coxon.³ It also depends on the flash energy, since this will determine the relative concentrations of ClO₂ and ClO with which the oxygen atom produced in the primary photolysis will react. At flash energies sufficiently high to photolyse >50% of the ClO₂ directly, there will be an excess of oxygen atoms over that required to decompose the ClO₂ remaining and reaction (5) will occur even if $k_2/k_5 >>1$.

At low flash energies (corresponding to <40% primary photolysis) reactions (5)—(7) may be neglected to a first approximation. The second-order plot for ClO is then linear and a reasonably accurate value of ϵ is obtained by equating [ClO] at zero time with the amount of ClO₂ decomposed overall. Likewise, under these conditions, the decay of O₂* is determined largely by ClO and ClO₂, and values of $k_{\rm B}$ may be determined.

At high flash energies (>60% primary photolysis), an appreciable amount of ClO is removed rapidly by reaction (5) and the second-order plot becomes linear only after the oxygen atoms are consumed. A linear extrapolation of this plot yields the concentration of ClO after reactions (2) and (5) are completed. An extrapolation of the experimental points below $\sim 50 \,\mu$ sec. yields an approximate value for the concentration of ClO which would have been produced in the absence of reaction (5). The difference between the two values of [ClO] gives, approximately, the [O] produced in excess of that required for 100% overall decomposition of the ClO₂.

On this basis, a value of k_5 ca. 6×10^9 l.mole⁻¹ sec.⁻¹ was obtained from the initial rapid decay of ClO. The same value has been given as a lower limit for k_5 .³

CHEMICAL COMMUNICATIONS, 1968

The increased rate of decay O_2^* is due to the extremely high efficiency of chlorine and/or oxygen atoms and we calculate an approximate value $(k_6[Cl] + k_7[O])/([Cl] + [O]) = 10^{10} l.mole^{-1} sec.^{-1}.$ The consequence that at least one of the constants k_6 , k_7 , has the exceptionally high value of ca. 10¹⁰ 1.mole⁻¹ sec.⁻¹ is acceptable in view of the strong interactions expected to exist between the atoms and oxygen. The experimental results with added Cl₂ support this interpretation as far as the Cl atom is concerned. The effect of Cl₂O is consistent with the rapid removal of Cl (and probably O) atoms in the fast reactions:

$$\begin{array}{l} \mathrm{Cl} + \mathrm{Cl}_{2}\mathrm{O} \rightarrow \mathrm{Cl}_{2} + \mathrm{ClO} \\ \mathrm{O} + \mathrm{Cl}_{2}\mathrm{O} \rightarrow 2\mathrm{ClO} \end{array}$$

Further work to test this mechanism and to obtain more accurate values of the rate constants is in progress.

We thank the National Research Council of Canada for a research grant.

(Received, June 27th, 1968; Com. 851.)

- ¹ F. J. Lipscomb, R. G. W. Norrish, and B. A. Thrush, Proc. Roy. Soc., 1956, A, 233, 455.
- ² F. H. C. Edgecombe, R. G. W. Norrish, and B. A. Thrush, Proc. Roy. Soc., 1957, A, 243, 24.
- ³ M. A. Clyne and J. A. Coxon, Trans. Faraday Soc., 1966, 62, 1175.
 ⁴ M. A. A. Clyne and J. A. Coxon, Proc. Roy. Soc., 1968, A, 303, 207.
 ⁵ G. Porter and F. J. Wright, Discuss. Faraday Soc., 1953, 14, 23.
- ⁶ Inorg. Synth., 1953, 4, 152.