Chemical Activation during Photodifluoroamination

By CARL L. BUMGARDNER,* ERNEST L. LAWTON, and HALBERT CARMICHAEL (Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607)

RECENTLY several groups¹ reported the loss of HF from a variety of chemically activated fluorohydrocarbons. We describe a case where an excited nitrogen-containing molecule, difluoroaminomethane (MeNF₂), is converted into HCN by elimination of HF.[†]

When NF_2 is photolysed (2537 Å) at room temperature with alkanes, alkyldifluoroamines are produced, probably by the sequence.²

$$\begin{array}{c} h\nu \\ NF_2 \xrightarrow{} F + NF \\ RH + F \xrightarrow{} HF + R \\ R + NF_2 \xrightarrow{} RNF_2 \end{array}$$

In the reaction involving methane, HCN was also formed. According to carbon mass balances, MeNF₂ and HCN accounted for $(105 \pm 5\%)$ of the methane consumed. At first the HCN was believed to arise from initially formed MeNF₂ by bimolecular elimination reactions. However, the ratio HCN:MeNF₂ was found to be time independent (Figure 1) and pressure dependent (Figure 2).

If an excited $MeNF_2$ molecule is the common precursor of stable $MeNF_2$ and HCN then the pressure dependence of the product ratio can be expressed quantitatively in the form:

The linear plot of product ratio against reciprocal pressure has a zero intercept.

Similar straight line graphs were also obtained when the inert gases N_2 and CF_4 were used to establish the pressure. The slopes (k_r/k_d) were different for the three lines, which converged to a common point at zero pressure. Comparison of the ratio of rate constants in the Table shows that

Comparison of k_r/k_d	
Deactivator	$k_{ m r}/k_{ m d} imes10^{-2}{ m Torr}$
CF	1.0
CH.	$2 \cdot 9$
N.	8.6

FIGURE 1. Product dependence on time.

the pentatomic CF_4 is a more efficient deactivator than diatomic N_2 . As anticipated, CH_4 occupies an intermediate position.

FIGURE 2. Product dependence on pressure.

(Received, June 24th, 1968; Com. 838.)

 \dagger Whether the loss of HF occurs stepwise is not known. However, a search in the mass spectra failed to provide any evidence for CH₂NF, the expected intermediate of a multi-step process. This compound is unknown so whether it would survive the reaction conditions cannot be determined at this time.

¹ J. A. Kerr, A. W. Kirk, B. V. O'Grady, and A. F. Trotman-Dickenson, *Chem. Comm.*, 1967, 365; D. C. Phillips and A. F. Trotman-Dickenson, *J. Chem. Soc.* (A), 1968, 1144; G. O. Pritchard and J. T. Bryant, *J. Phys. Chem.*, 1968, 72, 1603; W. G. Alcock and E. Whittle, *Trans. Faraday Soc.*, 1965, 61, 244.

² C. L. Bumgardner, Tetrahedron Letters, 1964, 3683.