A Novel Displacement of the Nitro-group from p-Nitrotoluene and Related Compounds

By J. I. G. Cadogan,* D. J. Sears, and D. M. Smith
(Department of Chemistry, University of St. Andrews, St. Andrews, Scotland)

While displacement of the nitro-group from activated aromatic compounds, such as o-dinitrobenzene, ${ }^{1}$ is well known, such a displacement from unactivated nitro-compounds such as p-nitrotoluene has not been reported.

We now report that reaction of boiling triethyl phosphite with p-nitrotoluene gives diethyl toluene-p-phosphonate (I; 5%), in addition to diethyl 4-methyl-3H-azepine-7-phosphonate (6%), diethyl N-ethyl- N - p-tolylphosphoramidate (24%), and diethyl N - p-tolylphosphoramidate $(26 \%) .^{2} \quad p$ Nitroanisole and p-ethylnitrobenzene give similar products in similar yields. Reactions involving o^{-2} and m-nitro-analogues do not give rise to the corresponding diethyl arenephosphonates, thus indicating a fine balance between the various possible reaction paths. ${ }^{2,3}$

It is considered that the diethyl arenephosphonates produced in these reactions do not arise by direct nucleophilic displacement of the nitro-group, this being precluded by the presence of electron donating substituents. Instead, the route outlined in the Scheme is preferred, whereby nucleophilic attack on the oxygen of the nitro-group leads to the creation of an electrophilic phosphorus atom close to the aromatic ring now activated towards
electrophilic substitution, and in a position favourable for the formation of a four-membered intermediate of the type common in organophosphorus

chemistry. Collapse of this intermediate can then lead to the observed products.
(Received, July 9th, 1968; Com. 927.)

[^0]
[^0]: ${ }^{1}$ J. F. Bunnett, Quart. Rev., 1958, 12, 1; J. I. G. Cadogan, D. J. Sears, and D. M. Smith, Chem. Comm., 1966, 491.
 ${ }^{2}$ Cf. J. I. G. Cadogan, R. K. Mackie, and M. J. Todd, Chem. Comm., 1968, 736.
 ${ }^{3}$ J. I. G. Cadogan, Quart. Rev., 1968, 22, 222.

