1109

Benzonitrile Complexes of Ruthenium(II) and Ruthenium(III): Analogues of the Molecular Nitrogen Complex Ion $Ru(NH_3)_5N_2^{2+}$

By PETER C. FORD* and RICHARD E. CLARKE

(Department of Chemistry, University of California, Santa Barbara, Santa Barbara, California 93106)

WE report the synthesis of some penta-ammineruthenium(II) and penta-ammineruthenium(III) substituted benzonitrile complexes. Since organonitriles have ligand properties analogous to molecular nitrogen (the co-ordinating atom is nitrogen, attached to the rest of the uncharged ligand by a triple bond, Ru-N=), organonitrile co-ordination compounds are potential models of N₂ complexes in which the metal-N-N linkage is linear.¹ In particular, the RuII compounds reported, are analogous to the N₂ complex $Ru(NH_3)_5N_2^{2+}$ which has been synthesized by several routes.² The i.r. spectra of these compounds show the bonding between Ru^{II} or Ru^{III} and ligands of this type. Co-ordination to Ru^{II} leads to a decrease in the C = N stretching frequency v_{CN} in all cases while coordination to Ru^{III} leads, with one exception, to increased $\nu_{\mbox{\tiny CN}}.$ To our knowledge, these are the first reported examples of decreased v_{CN} resulting from co-ordination of monodentate organonitriles to a metal cation.[†]

The complex ions, $\operatorname{Ru}(NH_3)_5(NC-R)^{2+}$, were synthesized by the procedure reported for the preparation of penta-ammineruthenium(II) complexes of aromatic heterocycles.⁴ Reduction of

aqueous $[Ru(NH_3)_5Cl](CF_3CO_2)_2$ over Zn(Hg) in the presence of an excess of nitrile gave the desired complex ion which could be isolated as the bromide or tetrafluoroborate salt in *ca*. 50% yield. The identities of some complexes were confirmed by elemental analysis.

Oxidation of the Ru^{II} complexes with Ce^{IV} or Ag^I gave the corresponding Ru^{III} complexes which were isolated as the Br⁻ or BF₄⁻ salts. These proved only marginally stable, decomposing slowly in aqueous solution and during recrystallization. For this reason, analysis results were poor although consistent with the Ru^{III} oxidation state. The oxidation was shown to be reversible by reducing the Ru^{III} compounds with Zn(Hg) to give the original Ru^{II} salts which were identified by their characteristic electronic and i.r. spectra.

The i.r. data reported in the Table demonstrate that each nitrile co-ordination to penta-ammineruthenium(II) decreases $v_{\rm CN}$, with $\delta v_{\rm CN}$ ranging from -31 to -57 cm.⁻¹. Such behaviour parallels the large decrease in $v_{\rm NN}$ from free N₂ (2330 cm.⁻¹) to Ru(NH₃)₅N₂²⁺ (2105–2167 cm.⁻¹, anion dependent, KBr disc),^{2b} and is in sharp contrast to the typical increase in $v_{\rm CN}$ for organonitriles on co-ordination

 \uparrow A recent communication notes a decrease in v_{CN} resulting from Ru^{II} co-ordination with acrylonitrile; however, evidence is presented suggesting the olefinic bond as the co-ordination site (reference 3).

to Lewis acids.⁴ The Table also shows that, with one exception, co-ordination to penta-ammineruthenium(III) increases v_{CN} . Unlike v_{NN} for Ru- $(NH_3)_5N_2^{2+}$, ν_{CN} (KBr disc) values for the RuII and RuIII benzonitrile complexes are relatively insensitive to the identity of the anion. This fact and the observation that v_{CN} for the 4-toluonitrile complexes changed little from the spectra obtained in a KBr disc to those obtained in aqueous solution confirms that the values of δv_{CN} are inherent in the complexes and not due to solid-state effects.

The decrease in v_{CN} on co-ordination to pentaammineruthenium(II) undoubtedly results from a decreased C-N bond order due to metal-electron backbonding into nitrile π^* orbitals. Consistent with this explanation is the observation that the larger δv_{CN} values occur with electron-withdrawing ligand and the stronger band at a frequency 23 cm.⁻¹ less than the free ligand. Since 4-carboxybenzonitrile is bidentate, it is possible that the stronger band is the result of RuIII co-ordination at the carboxylate and the weaker band the result of co-ordination at the nitrile. Similar decreases in ν_{CN} have been seen for 4-cyanopyridine co-ordinated at the pyridine nitrogen to metal ion centres which increase ν_{CN} when co-ordinated to aryl nitriles.⁸ However, the electronic spectra of the RuII and RuIII 4-carboxybenzonitrile complexes are markedly similar to the spectra of the 4-chlorobenzonitrile analogues, which implies similarity in structure.

The difference in the sign of δv_{CN} for Ru^{II} as opposed to Ru^{III} benzonitrile complexes suggests that while penta-ammineruthenium(II) is capable

Infrared spectral data, $v_{\rm CN}$ (cm.⁻¹)^a

R–	RCN	[Ru(NH ₃) ₅ (RCN)]Br	[Ru(NH ₃) ₅ (RCN)]Br ₃
Ph	$2231s^b$	2194 s	2268 m
$(BF_4^- \text{ salts})$		2194s	2272m
$p-MeC_6H_4$	2230sc	2198s	2263m
		$2199 \mathrm{m}^{d}$	$2263w^d$
$p-ClC_6H_4^-$	2228s	2192s	2264 m
	2232s°		
$p - HO_2C \cdot C_6H_4^-$	2231s	2179s	2208m, 2275w
Ph	$2246s^{b}$	2189s	

^a Spectra taken on a Beckman IR-7 spectrophotometer in KBr disc except where noted; ^b neat; ^c in CHCl_a; in aqueous solution, Irtran liquid cell.

phenyl substituents. However, the magnitude of the shift is unlikely to be a quantitative measure of backbonding interaction as there is no information about delocalization into the phenyl ring.

Co-ordination normally increases v_{CN} for organonitriles,⁵ and this effect has been ascribed both to kinematic coupling of the carbon-nitrogen and nitrogen-metal stretching vibrations⁶ and to a larger $C \equiv N$ force constant.⁷ Apparently these effects predominate for most benzonitriles coordinated to RuIII. The one exception is the Ru^{III} 4-carboxybenzonitrile complex which has two absorption bands in the nitrile region, the weaker one at a higher frequency than the free

of substantial π -backbonding towards ligands of this type, penta-ammineruthenium(III) is a much "harder" acid and hence acts primarily as a σ -acceptor for the lone electron pair on the nitrile nitrogen. A similar conclusion has been drawn concerning the bonding between these moieties and aromatic heterocycles.³ Since oxidation of ${\rm Ru}({\rm NH}_3)_5 {\rm N_2}^{2+}$ leads to quantitative release of N_{2} ,^{2c} it is apparent that the substantial π -backbonding is essential to the Ru^{II}-N₂ bond stability.

We thank the Petroleum Research Fund and the Faculty Research Committee, University of California, Santa Barbara for support.

(Received, July 12th, 1968; Com. 937.)

- ⁵ R. A. Walton, Quart. Rev., 1965, 19, 126.
- ⁶ T. L. Brown and M. Kubota, J. Amer. Chem. Soc., 1961, 83, 4175.
 ⁷ K. F. Purcell and R. S. Drago, J. Amer. Chem. Soc., 1966, 88, 919.
 ⁸ R. A. Walton, J. Inorg. Nuclear Chem., 1966, 29, 2229.

¹ J. H. Enemark, B. R. Davis, T. A. McGinnety, and J. A. Ibers, Chem. Comm., 1968, 96.

² (a) A. D. Allen and C. V. Senoff, *Chem. Comm.*, 1965, 621; (b) A. D. Allen, F. Bottomley, R. O. Harris, V. P. Reinsalu, and C. V. Senoff, *J. Amer. Chem. Soc.*, 1967, **89**, 5595; (c) D. E. Harrison and H. Taube, *J. Amer. Chem. Soc.*,

 ¹Jaf, 89, 5706; (d) J. Chatt and J. E. Fergusson, *Chem. Comm.*, 1968, 126.
 ³ A. Misono, Y. Uchida, M. Hidai, and I. Inomata, *Chem. Comm.*, 1968, 705.

⁴ P. Ford, D. Rudd, R. Gaunder, and H. Taube, J. Amer. Chem. Soc., 1968, 90, 1187.