## Electronegativity-induced Quadrupole Splittings in the Mössbauer Spectra of Some Tin(IV) Compounds

By R. V. PARISH\* and R. H. PLATT

(Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester, 1)

SINCE the environment of the tin atom in compounds of the type  $R_3SnX$  has less than cubic symmetry, the Mössbauer spectra of such compounds would be exected to show a quadrupole splitting. However, in several instances [e.g.  $X = H_1^{1,2}$  SnR<sub>3</sub>,<sup>3</sup> Ge(SnR<sub>3</sub>)<sub>3</sub>,<sup>3</sup> CH:CH<sub>2</sub><sup>4</sup>] no discernible splitting has been found, and it has been suggested that the spectrum will be split only if the group X is capable of  $\pi$ -bonding to the tin atom.<sup>3</sup> We doubt this suggestion, and now present data which show that quadrupole splitting can be induced by  $\sigma$ -bonding (electronegativity) effects alone. Some similar data have been reported recently, but not interpreted in this way.<sup>5</sup> In Table 1 are presented Mössbauer parameters for compounds of the type  $R_3SnX$  (R = Me, Ph), which fall into three groups: (a) X = Me, Ph, CH:CH<sub>2</sub>, SnMe<sub>3</sub>;  $\Delta = 0$  mm. sec.<sup>-1</sup>; (b) X = CF<sub>3</sub>, C<sub>6</sub>F<sub>5</sub>, C<sub>6</sub>Cl<sub>5</sub>, C:CPh;  $\Delta = 1\cdot0-1\cdot4$  mm. sec.<sup>-1</sup>; (c) X = F, Cl, Br, I;  $\Delta = 2\cdot2-3\cdot9$  mm. sec.<sup>-1</sup> The small quadrupole splittings of the second group of compounds are quite well resolved with the <sup>119</sup>Sn-Pd source. Several lines of evidence suggest that the effective electronegativities of CF<sub>3</sub>, C<sub>6</sub>F<sub>5</sub>, and C:CPh are comparable to those of Cl and Br, and appreciably greater than those of Me, Ph, and SnR<sub>3</sub>. Such evidence may be adduced from the isomer shifts of SnX<sub>4</sub>,<sup>6</sup> from the Me-Sn

## CHEMICAL COMMUNICATIONS, 1968

|                                                 |                   |  |    | TAE | BLE I. MÖSS | bauer <b>paramete</b> rs | s for R <sub>3</sub> SnX <sup>a</sup> |            |                      |
|-------------------------------------------------|-------------------|--|----|-----|-------------|--------------------------|---------------------------------------|------------|----------------------|
| Compound                                        |                   |  |    | δ   |             | Δ                        | $\Gamma_1$                            | $\Gamma_2$ | Ref.                 |
| Me₄Sn                                           |                   |  |    |     | 1.29        | 0.00                     | 0.81                                  |            | b                    |
| Me,SnSnMe,                                      |                   |  |    | ••  | 1.46        | 0.00                     | 0.96                                  |            | ь                    |
| Me SnPh                                         |                   |  |    |     | 1.16        | 0.00                     |                                       |            | <b>2</b>             |
| Me <sub>3</sub> SnCH : C                        | Ή,                |  |    |     | 1.30        | 0.00                     |                                       |            | 4                    |
| Me <sub>s</sub> SnCF <sub>3</sub>               |                   |  |    | • • | 1.31        | 1.38                     | 0.92                                  | 0.98       | ь                    |
| Me <sub>3</sub> SnC <sub>6</sub> F <sub>5</sub> |                   |  |    |     | 1.27        | 1.31                     | 0.76                                  | 0.97       | ь                    |
| Me SnC Cl                                       |                   |  |    |     | 1.32        | 1.09                     | 0.70                                  | 1.00       | ь                    |
| Me SnC CP                                       | n                 |  |    |     | 1.23        | 1.17                     | 0.76                                  | 0.92       | ь                    |
| Me <sub>3</sub> SnF                             |                   |  |    |     | 1.28        | 3.86                     |                                       |            | <b>2</b>             |
| Me <sub>s</sub> SnCl                            |                   |  |    |     | 1.42        | 3.41                     |                                       |            | <b>2</b>             |
| Me SnBr                                         |                   |  |    |     | 1.49        | 3.25                     |                                       |            | $^{2}$               |
| Me SnI                                          |                   |  |    |     | 1.48        | 3.05                     |                                       |            | 2                    |
| Ph                                              |                   |  |    |     | 1.27        | 0.00                     | 0.93                                  |            | b                    |
| Ph.SnCH:C                                       | н.                |  |    |     | 1.28        | 0.00                     | 0.98                                  |            | b                    |
| Ph.SnC.F.                                       | <u>.</u> .        |  |    |     | 1.30        | 0.90                     | 1.00                                  | 1.30       | b                    |
| 3 0 3                                           |                   |  |    |     | 1.25        | 0.98                     |                                       |            | 5                    |
| Ph.SnC.Cl.                                      |                   |  |    |     | 1.27        | 0.84                     | 0.82                                  | 0.82       | b                    |
| Ph.SnF                                          |                   |  |    |     | 1.25        | 3.53                     | 0.84                                  | 0.90       | b                    |
| Ph.SnCl                                         |                   |  |    |     | 1.31        | 2.56                     | 0.88                                  | 0.97       | b                    |
| Ph.SnBr                                         |                   |  |    |     | 1.37        | 2.48                     | 0.84                                  | 0.98       | $\tilde{\mathbf{b}}$ |
| Ph.SnI                                          |                   |  |    |     | 1.20        | 2.25                     | 1.28                                  | 1.24       | $\tilde{\mathbf{b}}$ |
| PhSn(CH:C                                       | (H <sub>2</sub> ) |  | •• | ••  | $1\cdot 25$ | 0.00                     | 0.88                                  | *          | b                    |

<sup>a</sup> All data are in mm. sec.<sup>-1</sup>, and refer to ca.  $80^{\circ}\kappa$ .

 $\delta$  = isomer shift relative to  $SnO_{2}$  at room temperature, and

 $\Delta$  = quadrupole splitting, both believed accurate to better than  $\pm 0.05$  mm. sec.<sup>-1</sup>;  $\Gamma_1$  and  $\Gamma_2$  are widths at halfheight of the absorptions at higher and lower velocity respectively, accurate to  $\pm 0.10$  mm. sec.<sup>-1</sup>. <sup>b</sup> This work.

coupling constants in the n.m.r. spectra of Me<sub>a</sub>SnX (ref. 7 and this work), and from Taft  $\sigma^*$  constants<sup>8</sup> (Table 2). Also, the electronegativity of CF3 (3.29) is significantly greater than those for Me  $(2\cdot 30)$  and H  $(2\cdot 20)$ .<sup>9</sup> Stöckler and Sano suggest that the quadrupole splittings observed in the spectra of the perfluorophenyl compounds could be due to  $\pi$ -donation from the ring to the tin atom.<sup>5</sup> However, n.m.r. data show that SnMe<sub>3</sub> does not withdraw  $\pi$ -density from the C<sub>6</sub>F<sub>5</sub> ring,<sup>10</sup> which is supported by our observation that the effects, on the Mössbauer spectra, of  $C_6F_5$  and  $CF_3$  are very similar ( $CF_3$  would not be expected to show an electromeric effect). We therefore attribute the quadrupole splittings of the second set of compounds to electronegativity effects. The smaller splitting observed for  $X = C_6 Cl_5$  than for  $X = C_6 F_5$ is consistent with this interpretation.

The quadrupole splittings for the halides are considerably greater than those for  $X = CF_3$ , etc. Since the electronegativities are not greatly different, additional factors must be involved. This effect cannot be due to  $\pi$ -bonding, since  $\pi$ -donation and  $\sigma$ -withdrawal would work in opposition,<sup>2</sup> and the quadrupole splitting would be reduced (unless the  $\pi$ -effect grossly outweighed the  $\sigma$ -effect, which is most unlikely). The most plausible explanation of the enhanced  $\Delta$ -values is that the halides all have five-co-ordinate, polymeric structures similar to that of Me<sub>3</sub>SnF.<sup>11</sup> Such a structure would give rise to a quadrupole splitting even if all five ligands were



FIGURE. Mössbauer spectra of  $R_sSnX$  compounds. (a) Me<sub>3</sub>SnCF<sub>3</sub>, (b) Me<sub>3</sub>SnC<sub>6</sub>Cl<sub>5</sub>, (c) Ph<sub>3</sub>SnC<sub>6</sub>Cl<sub>5</sub>. The solid line represents the computed spectrum.

|                                                            |                            | TABLE        | 2. Electron                | egativity data  |          |                |              |
|------------------------------------------------------------|----------------------------|--------------|----------------------------|-----------------|----------|----------------|--------------|
| Х                                                          | Cl                         | Br           | I                          | CF <sub>3</sub> | $C_6F_5$ | CCPh           | Me           |
| $\delta$ in SnX <sub>4</sub> (mm. sec. <sup>-1</sup> )     | 0.9                        | $1 \cdot 2$  | 1.8                        | <b>.</b>        | 1.0      |                | 1.2          |
| $J_{119Sn-Me}$ (c. sec. <sup>-1</sup> )<br>Taft $\sigma^*$ | $58 \cdot 1 \\ 1 \cdot 05$ | 57·8<br>1·00 | $57 \cdot 2 \\ 0 \cdot 85$ | 60·9<br>0·92    | 59.4     | $60.3 \\ 0.48$ | 54·0<br>0·00 |

identical. It is of interest that, apart from the fluorides, the  $\Delta$ -values for Ph<sub>3</sub>SnX are proportional to those for the corresponding Me<sub>3</sub>SnX.

We gratefully acknowledge the award (to R.H.P.) of an S.R.C. Studentship.

(Received, June 28th, 1968; Com. 857.)

<sup>1</sup> R. H. Herber and G. I. Parisi, Inorg. Chem., 1966, 5, 769.

<sup>2</sup> M. Cordey-Hayes, R. D. Peacock, and M. Vucelic, J. Inorg. Nuclear Chem., 1967, **29**, 1177. <sup>3</sup> T. C. Gibb and N. N. Greenwood, J. Chem. Soc. (A), 1966, 43.

4 A. Yu. Aleksandrov, O. Yu. Okhlobystin, L. S. Polak, and V. S. Shipnel, Doklady Akad. Nauk S.S.S.R., 1964, 157, 934.

<sup>5</sup> H. A. Stöckler and H. Sano, *Trans. Faraday Soc.*, 1968, **64**, 577. <sup>6</sup> M. Cordey-Hayes in "Applications of the Mössbauer Effect in Chemistry and Solid State Physics," Technical 

<sup>11</sup> H. C. Clark, R. J. O'Brien, and J. Trotter, J. Chem. Soc., 1963, 83.