The Operation of syn- and anti-Mechanisms in Base-promoted Toluene-p-sulphonate Eliminations in Open-chain Systems

By J. ZÁVADA, M. PÁNKOVÁ, and J. SICHER*

(Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Science, Prague)

RECENTLY,^{1,2} we showed that in base-induced eliminations of cyclodecyl and cyclododecyl toluene-p-sulphonates a syn- and an anti-mechanism operate side by side: the trans-cycloalkenes arise by syn-elimination, practically exclusively in the former system and largely in the latter. Evidence on the steric course of cis-cycloalkene formation was less detailed but it appeared that, in contrast to the corresponding trans-isomers, these are formed largely or even exclusively by antielimination.

Froemsdorf and his colleagues³ have now examined the steric course of the elimination of 1-methylpropyl toluene-*p*-sulphonate. They argued that since our observations1 were made "under conditions that emphasize the carbanionic character of the transition state, competing syn- and antielimination might occur under the strongly basic conditions using dimethyl sulphoxide with alkoxide bases". However, under these reaction conditions they found practically no syn-elimination and concluded that "in acyclic systems which allow the stereoelectronic requirements of both syn- and anti-elimination to be met. anti-elimination occurs preferentially with almost total exclusion of syn-elimination". † We present evidence showing that this conclusion is not justified. It must be stressed that a strong base represents a necessary but not a sufficient condition for ready *syn*-elimination. This point, which we emphasized on a previous occasion,^{2,4} is evident from the data on the steric course of formation of *trans*-cyclododecene² and bicyclo[2,2,2]octene from the corresponding toluene-*p*-sulphonate esters (Table 1).

The percentage of syn-elimination contributing to the overall reaction may be seen to decrease significantly on going from ion-pair supporting solvents benzene (or t-butyl alcohol)² to dissociating solvents such as dimethylformamide or dimethyl sulphoxide. We have suggested that this may be accounted for in terms of a "cyclic" mechanism of the syn-elimination process, involving a K⁺... OR⁻ ion pair as the effective basic species (1).

Irrespective of whether this represents the correct interpretation, our data on *trans*-cyclododecene formation and those given in Table 1 show that t-butoxide-dimethyl sulphoxide is *a priori* not a suitable system for testing whether a *syn*-mechanism operates in the elimination of the open-chain toluene-p-sulphonates.

We have examined the steric course of *trans*and *cis*-dec-5-ene formation from stereospecifically [2-²H]-labelled 1-butylhexyl toluene-*p*-sulphonates with potassium t-butoxide using benzene, t-butyl

 \dagger The dual elimination behaviour observed by us in cyclic compounds^{1,2,4} was thought to stem from "the inability of these systems to satisfy the requirements (of *anti*-elimination) without creating a prohibitive amount of conformational strain".⁴

T.	ABLE	1

Bicyclo[2,2,2]octene formation from cis- and trans-[3-2H]-bicyclo[2,2,2]oct-2-yl toluene-p-sulphonate^a and potassium t-butoxide: % syn-elimination in the unlabelled compound

Solvent			% Deuterium in From <i>cis</i> -OTs,D	% syn Elimination•	
Benzene [»]		• •	16.9	94.75	90
DMF	• •		67·5	87.4	65
DMSO ^c	• •		81.1	73.7	45

" The labelled bicyclo-octanols were prepared by standard procedures' from bicyclo-octene; b three-fold excess of 0.5M-base at 130° for 100 hr.; ° 0.5M-base at 75° for 8 hr.; d determined by mass spectroscopy and corrected for incomplete deuteriation (\sim 95%) of the starting toluene-*p*-sulphonates; • the data refer to the steric course in the parent (unlabelled) compound and have been calculated on the assumption that $(k_{\rm H}/k_{\rm D})_{syn} = (k_{\rm H}/k_{\rm D})_{anti}$; actually, the former is likely to be smaller :^{2,4} consequently the figures given represent maximum values.

alcohol, and dimethylformamide as solvents. The synthesis of the threo- and erythro-6-[2H]-labelled decan-5-ols, and the principles of the procedure are reported in the preceding Communication.

The results (Table 2) show that the total amount of syn-elimination in dec-5-ene formation (% syn overall) decreases, in the order anticipated, from 19.4 and 10.1% in benzene and t-butyl alcohol to only 5.4% in dimethylformamide. Considering the mode of formation of the trans-isomer (where our earlier findings^{1,2,4} on the steric course of cycloalkene formation lead us to expect syn-elimination to operate more extensively) we see that in benzene syn-elimination indeed accounts for 33% of the reaction and in t-butyl alcohol for 16%; in dimethylformamide this figure is only 4.5%. It is hence not surprising that Froemsdorf et al.4 found practically no syn-elimination in the even more strongly dissociating dimethyl sulphoxide.

We may conclude that in the t-butoxide-

induced eliminations of toluene-p-sulphonate esters of the open-chain secondary alcohols, at any rate in the solvents benzene and t-butyl alcohol. svnand anti-elimination do operate side by side. The fact that the contribution of syn-elimination is not as extensive as in the case of the cyclodecyl or cyclododecyl toluene-p-sulphonates^{1,2} is due to the relative slowness of anti-elimination in the tenand the twelve-membered ring, as correctly implied by Froemsdorf et al.,3 and also to the greatly accelerated rates of syn-elimination of rings of this size.4

TABLE 2

Relative rate constants of syn-elimination $(k_{s\to t}, k_{s\to c})$ and anti-elimination $(k_{a\to t}, k_{a\to c})$ leading to trans- and cisdec-5-ene from 1-butylhexyl toluene-p-sulphonate^a and potassium t-butoxide^b

			tr	ans-Dec-5-e	ene	ci	s-Dec-5-en	e	
Solvent		ks→t	ka→t	% syn	ka→c	$k_{s \rightarrow c}$	% anti	% syn overall	
Benzene ^c		 	$15 \cdot 1$	30 ·9	33	49.7	4·3	92	19.4
Bu [‡] OH ⁴		 	4.7	$24 \cdot 3$	16	65.6	5.4	92	10.1
DMF ^e		 	3.4	72.6	4.5	$22 \cdot 2$	1.8	92	$5 \cdot 2$

^a The method of evaluation of the relative rate constants $k_{a \rightarrow t}$, etc., was that described in the preceding Communication for the reaction of the corresponding 'onium salts; b a three-fold excess of base was employed; 0.3M-base at 125° for 25 hr.; ^d 1.3M-base at 100° for 10 hr.; ^e 0.9M-base at 40° for 2 hr.

(Received, June 11th, 1968; Com. 765.)

¹ J. Závada, M. Svoboda, and J. Sicher, Tetrahedron Letters, 1966, 1626. ² M. Svoboda, J. Závada, and J. Sicher, Coll. Czech. Chem. Comm., 1968, 33, 1415.

³ D. H. Froemsdorf, W. Dowd, W. A. Gifford, and S. Meyerson, Chem. Comm., 1968, 449.

⁴ J. Sicher, J. Závada, and J. Krupička, Tetrahedron Letters, 1966, 1619; J. Závada, J. Krupička, and J. Sicher, Chem. Comm., 1967, 66; J. Závada, J. Krupička, and J. Sicher, Coll. Czech. Chem. Comm., 1968, 33, 1393; J. Sicher and J. Závada, ibid., 1967, 32, 2122; J. Závada and J. Sicher, ibid., p. 3701; J. Sicher and J. Závada, ibid., 1968, 33, 1278.