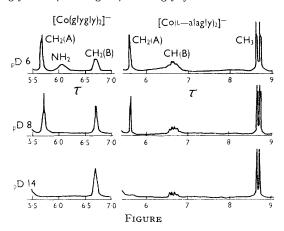
Selective Activation of Methylene Groups in Co-ordinated Peptides

By R. D. GILLARD,* P. R. MITCHELL, and N. C. PAYNE (University Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent)

RECENTLY we found¹ that dipeptides $(H\alpha_1 \cdot H\alpha_2)$ reacted with cobalt(II) or cobalt(III) to give, finally, $[Co(\alpha_1\alpha_2)_2]^-$. The mode of attachment² of each peptide unit, in neutral solution, is as shown in (I).

(B)
$$R^{1}HC$$
 $C = O$

(I) $C + R^{2}$ (A)


(A)

We now find for the glycylglycinate complex that the protons of the methylene group A $(R^2=H)$ exchange readily in alkaline solution with the deuterons of heavy water, whereas the protons of the methylene group B $(R^1=H)$ do not exchange under the same conditions, nor when kept in alkali for four weeks.

The ¹H n.m.r. spectra (in neutral heavy water) of (Ia; $R^1 = R^2 = H$) and (Ib; $R^1 = Me$; $R^2 = H$) are shown in the Figure. The assignments given rest on: (a) the very rapid disappearance at pD 7 of the broad signal† at τ 6, due to exchange of the NH₂ protons; (b) the slight splitting of the N-terminal methylene signal, B, by the NH₂ group—this splitting collapses rapidly at pD 7 as the NH₂ exchanges; (c) the change of the signal at τ 6.7 in passing from (Ia) to (Ib), the resonance at τ 5.6 being essentially unchanged.

At pD \gg 11, exchange of the protons A in (Ia) occurs at a measurable rate. For example, at pD 14, the half-time for the exchange is ca. 15 min.

at 35° ; the resonance signal at τ 5.6 has entirely disappeared after 2 hr. At pD 11, exchange is complete in ca. 14 days. We find similar exchange with other complexed peptides such as L-alanylglycine (see Figure) and glycyl-L-alanine. We

have also measured the ¹H n.m.r. spectra of these three dipeptides uncomplexed, as a function of pD, extending the measurements of Sheinblatt,³ and find shifts of the resonances at pD \sim p $K_{\rm NH}^+_3$ and at pD \sim p $K_{\rm co}^-_2$, but no evidence of exchange of any of the methylene protons, even in alkaline solution.

The present cases constitute a further example of the selective reactions possible in metal complexes of organic substrates. The protons of the *C*terminal residue, bonded in an amino-acid chelate ring, are activated to exchange; those of the *N*-

† ¹H resonances are referenced from internal t-butyl alcohol τ 8·73.

terminal residue (bonded in an N-N chelate ring) are not.

When taken in conjunction with the stereoselectivity of formation⁴ of these dipeptide metal complexes, a number of useful extensions are possible. For example, during the time required for complete exchange of the protons A in (Ib) and (Ic) ($\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^1 = \mathbb{M}$ e), the circular dichroism of

the complexes is quite unaffected. In the case of (Ic), this observation strongly suggests that the exchange at the asymmetric carbon of the *C*-terminal L-alanine residue is stereospecific. It therefore seems likely that the conformation of the terdentate bipeptide unit in (I) is fixed.

(Received, June 27th, 1968; Com. 847.)

² R. D. Gillard, E. D. McKenzie, R. Mason, and G. B. Robertson, Nature, 1966, 209, 1347.

³ M. Sheinblatt, J. Amer. Chem. Soc., 1965, 87, 572.

¹ R. D. Gillard, P. M. Harrison, and E. D. McKenzie, J. Chem. Soc. (A), 1967, 618; R. D. Gillard, E. D. McKenzie, R. Mason, and G. B. Robertson, Co-ordination Chem. Reviews, 1966, 1, 263.

⁴ N. C. Payne, Ph.D. Thesis, University of Sheffield, 1967.