1165

The Crystal Structure of Di- μ -phenylthio-bis(cyclopentadienylcarbonyliron) at -160°

By G. FERGUSON,* C. HANNAWAY, and K. M. S. ISLAM (Department of Chemistry, University of Glasgow, Glasgow, W.2, Scotland)

CONTROLLED dimerisation of $C_5H_5Fe(CO)_2SPh$ (I) results in two isomers of constitution (C_5H_5FeCO · SPh)₂ (II), one of which (m.p. 170°) is thermodynamically more stable than the other (m.p. 166°).¹ At least five geometrical isomers of (II) can be formulated; although spectroscopic evidence did not allow an unequivocal establishment of stereochemistry, two of the possibilities can be eliminated from ¹H n.m.r. spectra. It was conceivable that the more stable isomer was the *alltrans*-system (III), but as this was by no means certain the more stable crystalline material[†] was examined by single-crystal X-ray methods.

The crystals are monoclinic, space group $P2_1/c$, with eight molecules of $C_{24}H_{20}Fe_2S_2O_2$ in a unit cell of dimensions $a = 10\cdot13$, $b = 23\cdot22$, $c = 17\cdot98$ Å, $\beta = 97\cdot3^\circ$. 3700 X-ray intensity data were estimated visually from Weissenberg photographs of a crystal at -160° rotating about a. The iron and sulphur atoms of the two independent molecules in the asymmetric crystal unit were found by Patterson methods and the lighter atoms by

[†] This was kindly supplied by Dr. G. R. Knox, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, C.1.

application of the heavy-atom method. Refinement by isotropic least-squares calculations has lowered R to 0.12^{2}

Our results establish that the more stable isomer obtained on dimerisation of (I) has the cis-configuration (IV). The two independent molecules in the asymmetric unit have closely similar but not identical conformations; the small differences can be rationalised in terms of intermolecular packing effects. A detailed view of one of the molecules is given in the Figure.

In both molecules the Fe-S-Fe-S cycle is slightly puckered, equivalent, for example, to the ring being folded about a line through the Fe atoms through 16° in one molecule and 19° in the other. The mean length of the eight Fe-S bonds in the asymmetric unit is 2.262 ± 0.006 Å, close to the mean lengths in $[EtSFe(CO)_3]_2$ (2.259 \pm 0.007 Å),³ $[EtSFe(NO)_2]_2$ (2.27 \pm 0.004 Å),⁴ and to three of the bonds in $(C_5H_5FeS)_4$ (2.256 ± 0.002 Å).⁵ The incorporation of the octahedral iron and tetrahedral sulphur atoms in a four-membered ring has resulted in the internal angles at these atoms being reduced by about 10° from the values appropriate to undisturbed tetrahedral and octahedral geometry; thus the S-Fe-S angles are all 81° while the Fe-S-Fe angles are 98°. The Fe · · · Fe intramolecular distance, 3.39 Å in both molecules, is too long to accommodate a 'bent' bond of the type found in the compound [EtSFe(CO)₃]₂,³ but this kind of bond is, in any case, precluded here by consideration of the magnetic properties of (IV).

CHEMICAL COMMUNICATIONS, 1968

In each molecule the Fe-C-O bonds are, within experimental error, linear, parallel and therefore coplanar. The mean Fe-C and C-O distances of 1.71 ± 0.03 and 1.12 ± 0.03 Å respectively compare well with distances reported for example in $[C_5H_5Fe(CO)_2]_2$ (1.75 ± 0.03 and 1.12 ± 0.04 Å).⁶ The orientation of the phenyl rings in both molecules is almost identical and can be seen in the Figure. The mean S-C bond length and Fe-S-C angle are 1.76 ± 0.05 Å and 113° respectively. The mean distance of the iron atoms from the plane through the appropriate cyclopentadienyl ring is 1.71 Å, intermediate between the values found for ferrocene $(1.66 \pm 0.02 \text{ Å})^7$ and the somewhat larger values found for $[\rm C_5H_5Fe(\rm CO)_2]_2\,(1\cdot75\pm0\cdot03\,\rm \AA^6\,and$ $(C_5H_5FeS)_4$ (1.757 ± 0.005 Å).⁵

FIGURE. A view of one molecule showing the folding of the Fe-S ring and the orientation of the cyclopentadienyl and phenyl rings.

Disorder of cyclopentadienyl rings is not uncommon in ferrocene compounds at room temperature.⁵ The intensity data used in our calculations were deliberately collected at -160° in an attempt to avoid such possible complications. However there is evidence from a difference synthesis and from thermal parameters that even at this low temperature a cyclopentadienyl ring of one molecule is disordered; the mean U_{iso} of its carbon atoms is 0.06 Å² compared with a mean of 0.03 Å² in the other cyclopentadienyl rings.

(Received, July 15th, 1968; Com. 951.)

- ¹ M. Ahmad, R. Bruce, and G. R. Knox, *J. Organometallic Chem.*, 1966, 6, 1. ² C. Hannaway, B.Sc. Thesis, Glasgow, 1968. ³ L. F. Dahl and C.-H. Wei, *Inorg. Chem.*, 1963, 2, 328. ⁴ J. T. Thomas, J. H. Robertson, and E. G. Cox, *Acta Cryst.*, 1958, 11, 599.

- ⁵ R. A. Schunn, C. J. Fritchie, and C. T. Prewitt, *Inorg. Chem.*, 1966, 5, 892.
- ⁶ O. S. Mills, Acta Cryst., 1958, 11, 620.
 ⁷ J. D. Dunitz, L. E. Orgel, and A. Rich, Acta Cryst., 1956, 9, 373.