By DARWIN THUSIUS[†]

(Max-Planck-Institut für Physikalische Chemie, Göttingen, Germany)

THE kinetics of SCN⁻ binding to aquocobalamin have been studied by Randall and Alberty by means of the temperature-jump method.¹ A single relaxation time was observed which exhibited a first-order dependence on anion concentration, leading to apparent rate constants for the formation and dissociation of R_0 SCN.² We have studied the same reaction, but over a wider concentration range, and found the relaxation spectrum to consist of three timeconstants. Evidence is presented which suggests that the two additional effects arise from a linkage isomerization of SCN⁻ and a conformational change in the corrin ring.

Using the T-jump method, three relaxations are observed which, at low [SCN-], are well separated on the time axis. The smallest constant, $\tau_{\rm III}^{-1}$, is concentration dependent and corresponds to the relaxation observed by Randall and Alberty.¹ Above ca. 0.01M-[SCN⁻] the effect becomes negligible due to complete formation of R₀SCN. At 25° and $\mu = 0.5M$, the formation and dissociation rate constants determined from a plot of $\tau_{\rm III}^{-1}$ vs. ([SCN⁻] + [R₀OH₂]) are 1.9×10^{3} M⁻¹ sec.⁻¹ and $2 \cdot 1$ sec.⁻¹, respectively. On the other hand, $\tau_{\rm II}^{-1}$ is concentration-independent and equal to 40 sec.⁻¹. The fastest relaxation, τ_{I}^{-1} , cannot be separated from the heating time of the instrument (in this case $\sim 3 \times 10^{-6}$ sec.⁻¹) and could not be studied as a function of concentration. The effect may therefore consist of more than one time constant. In contrast to au_{III} , the amplitudes of both τ_{I} and τ_{II} increase with increasing [R₀SCN] and reach a maximum when essentially all of the aquo-complex is converted into product. This behaviour is good evidence that τ_{I} and τ_{II} are due to intramolecular transformations in R₀SCN. The conditions of the *T*-jump experiments were: $[\text{cobalamin}] = 0.7-3 \times 10^{-4}, \text{ (SCN}) = 1.0 \times 10^{-4}, \text{ (SCN}) =$ 10-3-0.50m, perchlorate medium, pH 4-5 (no buffer), $\Delta T = 12^{\circ}$, and $\lambda = 567$ m μ .

The occurrence of three relaxation times indicates the presence of two cobalt species in addition to R_0OH_2 and R_0SCN . Stopped-flow experiments (25.5°, $\mu = 0.5M$, [cobalamin]₀ = $2-5 \times 10^{-5}M$, pH 4–5, $\lambda = 500 \text{ m}\mu$, dead time = 3 msec.) confirm the existence of one of these additional components. Below 0.03M (SCN-) the overall reaction is a one step process; the

formation and dissociation rate constants are $2\cdot3 \times 10^{3}$ M⁻¹sec.⁻¹ and $1\cdot8$ sec.⁻¹. At higher ligand concentrations, however, the anation takes place in two discrete steps, The data can be interpreted in terms of a ligand-dependent substitution reaction followed by a first order isomerization. The apparent rate constant for the second step is 40 sec.⁻¹, which is identical to τ_{II}^{-1} . Since we find the product spectrum to be independent of [SCN⁻] under the conditions prevailing in the stopped-flow experiments, it is unlikely that the observed optical density changes are due to a change in stoicheiometry at high ligand concentrations.

Apparently the rapid transition giving rise to $\tau_{\rm I}$ is common to a number of other cobalamins, all exhibiting an "immeasurably fast" time constant.³ In view of the recent evidence favouring the existence of temperature-dependent conformational changes in cobalamins,⁴ the observed relaxations may well arise from a rapid equilibrium between two conformers. The high rates $(k \geq 2 \times 10^5 \text{ sec.}^{-1})$ are consistent with an estimated ΔH of 2—3 kcal. for such a transformation.⁴

 $\tau_{\rm II}$ Is provisionally assigned to a linkage isomerization. This is consistent with the ligandindependent nature of $\tau_{\rm II}^{-1}$, the stopped-flow results, and the failure to find an analogous reaction with cobalamins where linkage isomerization is not possible (e.g., R_0N_3 and R_0I).³ Although thiocyanate is known to be bound through the sulphur atom in the crystalline complex,⁵ the kinetic data imply that ca. 5—10% of the cobalamin exists as R_0NCS in solution. The following minimal scheme rationalizes both the stopped-flow and *T*-jump results and is consistent with the reported stability constant.⁶

$$SCN^{-} + R_{0}OH_{2} \xleftarrow{k_{12}}{k_{21}} R_{0}SCN \xleftarrow{k_{23}}{k_{32}} R_{0}NCS$$
$$+ H_{2}O$$

Here R_0SCN refers to a mixture of two (or more) conformers in rapid equilibrium. The rate constants are: $k_{12} = 2.0 \times 10^3 M^{-1}$ sec.⁻¹, $k_{21} = 2$, $k_{23} \sim 4$, and $k_{32} = 36 \text{ sec.}^{-1}$ at 25°.

There has been considerable interest recently in the linkage isomerization of thiocyanatocomplexes,⁷ but in only a few cases have rate

† Present address: Laboratoire D'Enzymologie, Faculté des Sciences, Orsay, France.

constants been reported.8,9 The novelty of the cobalamin system lies in what appears to be a rather close balance between N- and S-bonding, which enables both the anation and isomerization reactions to be followed by simply perturbing the equilibrium.

Postdoctoral stipends from the National Institutes of Health and the Max-Planck-Institut are gratefully acknowledged.

(Received, July 4th, 1968; Com. 893.)

¹ W. C. Randall and R. A. Alberty, Biochem. 1966, 5, 3189.

 2 R₀X represents the cobalamin molecule with the cobalt-benzimidazole bond intact.

³ D. Thusius, unpublished observations.

⁴ R. A. Firth, H. A. O. Hill, J. M. Pratt, R. J. P. Williams, and W. R. Jackson, Biochem., 1967, 6, 2178.

⁵ Cíted in ref. 6.

⁶ J. M. Pratt and R. G. Thorp, J. Chem. Soc. (A), 1966, 187. According to this scheme, the observed stability constant (1200 M^{-1}) should be equal to k_{12}/k_{21} (1 + k_{23}/k_{32}).

 ⁷ See, *e.g.*, J. L. Burmeister and F. Basolo, *Inorg. Chem.*, 1964, 3, 1587; J. L. Burmeister, *ibid.*, 1964, 3, 919.
⁸ A. Haim and N. Sutin, *J. Amer. Chem. Soc.*, 1965, 87, 4210; *ibid.*, 1966, 88, 434.
⁹ J. L. Burmeister and F. Basolo, *Inorg. Chem.*, 1964, 3, 1202; F. Basolo, W. H. Baddley, and K. J. Weidenbaum, J. Amer. Chem. Soc., 1966, 88, 1576.