Insertion of Sulphur Dioxide into a Tin-Carbon Bond

By R. C. Edmondson and M. J. Newlands*†

(Chemistry Department, University of Manchester Institute of Science and Technology, Sackville Street, Manchester 1)

THE study of insertion reactions has recently become a topic of considerable interest in organometallic chemistry. A large variety of addends has been found to insert into tin-nitrogen and tinoxygen bonds,¹ while olefins have been inserted into metal-metal bonds,² and carbon monoxide and sulphur dioxide into transition metal-carbon bonds.³ The whole range of insertion reactions has recently been reviewed.⁴

In an attempt to insert sulphur dioxide into a

† Present address: Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

tin-iron bond as part of a general study of tin-iron compounds,⁵ we found that sulphur dioxide will insert into a tin-carbon bond. This appears to be the first insertion of sulphur dioxide into a tincarbon bond and provides a new method for forming carbon-sulphur bonds.

The compound $[C_5H_5Fe(CO)_2]_2Sn(SO_2Ph)_2$ was obtained as orange-yellow crystals in 70% yield by passing sulphur dioxide into bis- $(\pi$ -cyclopentadienyldicarbonyliron)diphenyltin in benzene at room temperature. The product has v(C=O) at 2020, 2000, 1941, and 1919 cm.⁻¹, probable $v(S-O)^{3b}$ at 1103 and 1088 cm.⁻¹, probable $v(S=O)^{6}$ at 869 and 853 cm.⁻¹, and ¹H resonances at τ 2.27 (complex) and 4.82 (singlet) of equal intensity.

The structure of the insertion product was confirmed by an independent synthesis from bis- $(\pi$ -cyclopentadienyldicarbonyliron)dichlorotin and sodium benzenesulphinate in methanol:

 $[C_5H_5Fe(CO)_2]_2SnCl_2 + 2PhSO_2Na \rightarrow$ $[C_5H_5Fe(CO)_2]_2Sn(SO_2Ph)_2 + 2NaCl.$

The insertion product could have a C-S-Sn or a C-S-O-Sn bond system. It has recently been found that insertion of carbonyl sulphide into a tin-nitrogen bond gives a tin-sulphur rather than a tin-oxygen bond.⁷ The application of the hardsoft acid-base concept⁸ would also favour the formation of Sn-S rather than Sn-O-S bonds. Finally, the reaction of sodium benzenesulphinate with organic halides gives compounds containing only carbon-sulphur bonds.9 The presence of bands at 869 and 853 cm.-1, however, indicates that the compound contains PhS(O)OSn groupings. Professor Bryan has now carried out a full X-ray crystallographic study¹⁰ which shows unambiguously that sulphur dioxide inserts into the phenyl-tin bonds to give a compound containing C-S(O)-O-Sn units.

H. C. Clark and N. A. D. Carey¹¹ have reported some reactions of organometallic compounds with liquid sulphur dioxide. Their interpretations of their results indicate insertion of SO₂ into Sn-Sn and Sn-Mn bonds. We found no evidence of insertion into Sn-Fe bonds.

(Received, July 8th, 1968; Com. 918.)

¹ A. G. Davies and W. R. Symes, J. Chem. Soc. (C), 1967, 1009 and references therein; K. Jones and M. F. Lappert, Organometallic Chem. Rev., 1966, 1, 67; J. R. Horder and M. F. Lappert, Chem. Comm., 1967, 485. ² H. C. Clark and J. S. Tsai, Inorg. Chem., 1966, 5, 1407; H. C. Clark, J. D. Cotton, and J. S. Tsai, Inorg. Chem.,

1966, 5, 1582.

³ (a) J. P. Bibler and A. Wojicki, J. Amer. Chem. Soc., 1966, 88, 4862; (b) T. H. Coffield, J. Kozikowski, and R. D. Closson, J. Org. Chem., 1957, 22, 598.

⁴ M. F. Lappert and B. Prokai, Adv. Organometallic Chem., 1967, 5, 225.

⁵ S. D. Ibekwe and M. J. Newlands, Chem. Comm., 1965, 114; J. Chem. Soc. (A), 1967, 1783; R. C. Edmondson and M. J. Newlands, Chem. and Ind., 1966, 1888.

⁶G. N. Coates and R. N. Mukherjee, J. Chem. Soc., 1964, 1295. ⁷K. Jones and R. F. Dalton, personal communication.

⁸ R. G. Pearson and J. Songstad, J. Amer. Chem. Soc., 1967, 89, 1827; B. Saville, Abstracts Internat. Sympos.: Soft and Hard Acids and Bases, London, 1967, pp. 15—18.
⁹ C. M. Suter, "The Organic Chemistry of Sulphur", Wiley, New York, 1944, p, 667 et seq.; M. Quadvlieg, in Houben-Weyl "Methoden der Organischen Chemie", Thieme, Stuttgart, 1955, vol. 9, p. 297 et seq.; F. Muth, *ibid.*, p. 340 et seq. ¹⁰ R. F. Bryan and A. R. Manning, following Communication.

¹¹ N. A. D. Carey and H. C. Clark, Canad. J. Chem., 1968, 46, 643.