The Structure of a Molybdenum(V)-L-Cysteine Chelate: $Na_2Mo_2O_4(cysteine)_2,5H_2O$

By J. R. KNOX* and C. K. PROUT

(Chemical Crystallography Laboratory, South Parks Road, Oxford)

THE e.s.r. signals of Mo^V in the reduced form of xanthine oxidase have been studied.¹ The signals indicate the presence of sulphur bonds, probably from cysteine, around octahedral molybdenum.² Following earlier work³ on the solution spectra of Mo^{V-VI} cysteine systems, Kay and Mitchell⁴ recently isolated a Mo^V cysteine compound, the structure of which we now report.

Na₂Mo₂O₄[SCH₂CH₂(NH₂)Co₂],5H₂O, M = 630, orthorhombic; $a = 14\cdot830 \pm 0.003$, $b = 19\cdot446 \pm 0.003$, $c = 6\cdot482 \pm 0.002$ Å; $D_{\rm m} = 2\cdot201$ g.cm.⁻³; Z = 4, $D_{\rm c} = 2\cdot238$ g. cm.⁻³; Mo- K_{α} radiation, $\mu = 15$ cm.⁻¹; space group $P2_12_12_1$ (D_2^4 No. 19); 1417 reflections exceeding the background by 3 σ were collected with a Pailred diffractometer. No absorption correction was made.

The structure was solved by Patterson and Fourier methods and refined by full-matrix least squares with isotropic temperature factors (R = 0.066).

In the binuclear complex anion each molybdenum atom is co-ordinated with bridging and terminal oxygen atoms and a tridentate cysteine ligand to form two distorted octahedra sharing a common edge. A non-crystallographic diad perpendicular to this edge very nearly relates the two halves. Each molybdenum atom is displaced 0.38 Å out of the O-O-S-N plane (± 0.01 Å) toward the multiple-bonded terminal oxygen. The 150° angle between the MoO₂ bridge planes, that presumably facilitates the formation of the direct Mo-Mo bond (2.569 Å) without expanding the O-Mo-O angles, is common to BaMo₂O₄ (C₂O₄)₂(H₂O)₂.⁵

In the cysteine and oxalato-complexes the "trans effect"⁶ of the Mo=O π -system should cause similar lengthening of Mo-O(carboxyl) bonds in each complex. However, in the cysteine complex this bond (2·29 Å) is significantly longer

than in the oxalate $(2 \cdot 12 \text{ Å})$. For the carboxygroup in the cysteine complex to come into bonding position, (1) the C_{α} and C_{β} carbon atoms must be displaced (by 0.9 and 0.3 Å) from the N-Mo-S plane in the direction of the molybdenum-carboxy bond and (2) the carboxy-group must be twisted to become coplanar with the molybdenum atom to maximise the strength of the bond. This rotation around C-C_{α} cannot be completed because of the close intraligand oxygen-sulphur approach (3.04 Å *cf.* 3.71 Å in free L-cysteine⁷) and the result is the abnormally long Mo-O bond.

FIGURE. The $Mo_2O_4(cysteine)_2^{-2}$ anion. Average distances and angles are shown.

The dihedral angle $S-C_{\alpha}-C_{\beta}-N$ about $C_{\alpha}-C_{\beta}$ (56°, cf. Gordon Conference convention⁸) need not change in this process and is equal to that in the unsubstituted aminoethanethiol chelate $[(\pi-C_5H_5)_2-MoS(CH_2)_2NH_2]^{+I-,9}$ but the O-C-C_{α}-N dihedral angle ($\dot{\psi}_2 = -23^{\circ}$) is larger than in free L-cysteine (-3°) with the molybdenum still 0.5 Å from the carboxy-plane.

The carboxyl group, rather than water, bonds trans to the Mo=O (terminal) bond because the carboxyl-group is better able to relieve the build-up

of charge density on the metal atom resulting from the $p\pi$ - $d\pi$ bonding.

There are no significant differences in the bond lengths of the chelated and free amino-acid; the carbon-sulphur bond is rather long in both cases.

The angles inside the chelate rings, particularly the internal O–C–C $_{\alpha}$ angle, tend to be smaller than those in the free acid, in agreement with the requirements of this tridentate co-ordination.

We thank Professor R. Mason, Sheffield University, for use of the diffractometer and the National Institute of General Medical Sciences, U.S. Public Health Service for financial support.

(Received, July 19th, 1968; Com. 970.)

¹ R. C. Bray and P. F. Knowles, *Proc. Roy. Soc.*, 1968, **302**, *A*, 351; R. C. Bray, P. F. Knowles, F. M. Pick, and T. Vanngard, *Biochem. J.*, 1968, **107**, 601. ² L. S. Meriwether, W. F. Marzluff, and W. G. Hodgson, *Nature*, 1966, **212**, 465.

- J. T. Spence and H. Y. Chang, *Inorg. Chem.*, 1963, 2, 319.
 A. Kay and P. C. H. Mitchell, *Nature*, 1968, 219, 267.
 F. A. Cotton and S. M. Morehouse, *Inorg. Chem.*, 1965, 4, 314.
 M. Merding and H. A. Lorg. *Acta. Curret*, 1969, 24, 1000.
- ⁷ M. M. Harding and H. A. Long, Acta Cryst., 1968, 24, 1096.
- ⁸ J. T. Edsall, P. J. Flory, J. C. Kendrew, A. M. Liquori, G. Nemethy, G. N. Ramachandran, and H. A. Scherager, J. Mol. Biol., 1966, 15, 399.
- ⁹ J. R. Knox and C. K. Prout, to be published.