Crystal and Molecular Structure of 2,2,3,4,4-Pentamethyl-1-phenylphosphetan 1-Oxide $\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{PO}\right)$

By Mazhar-Ul-Hague and Charles N. Caughlan*
(Montana State University, Bozeman, Montana 59715)

The structure of 2,2,3,4,4-pentamethyl-1-phenylphosphetan 1 -oxide was determined in order to understand the bonding and reactions at the phosphorus atom. Cremer and Chorvat ${ }^{1}$ synthesized this compound and proposed its structure on the basis of n.m.r. studies. \dagger
Crystals of 2,2,3,4,4-pentamethyl-1-phenylphos-phetan-1-oxide \dagger are orthorhombic, space group Pca2 $1, a=12 \cdot 34, b=15 \cdot 91$, and $c=14 \cdot 9 \AA, Z=$ 8 with two crystallographically unrelated molecules in the asymmetric unit. Intensity data were collected on a General Electric XRD-5 diffractometer equipped with single-crystal orienter using a scintillation counter for detector. Zircon-ium-filtered Mo-radiation was used. Intensities were measured with a $\theta-2 \theta$ scan, counting background on each side of the peak. The intensities of 943 reflections were above background. The structure was solved by locating two independent phosphorus atoms from the Patterson and Fourier syntheses. Refinement, not yet complete, has reduced R to 10.5% for all observed intensities. The structure, with pertinent bond distances, is shown in the Figure. The bond angles around both phosphorus atoms are much distorted from tetrahedral, ranging from 81.8$118.0^{\circ}$ in one case and $84.8-126.2^{\circ}$ in the other, the small angles being those in the heterocyclic rings. The carbon angles in the rings are 85.0 ($88 \cdot 1$), $102 \cdot 6(102 \cdot 1)$, and $84 \cdot 3\left(82 \cdot 6^{\circ}\right)$. The phenyl
groups are normal with the carbon-carbon distances averaging $1 \cdot 40 \AA$ and the angles 120°. The

Figure
phosphorus-oxygen distance is long for a phosphoryl bond. Average standard deviations are

[^0]$0.03 \AA$ for the bond distances and 1.5° for bond angles.

The four-membered ring is not planar in either molecule. In one molecule P and C(3) are 0.09 and $0 \cdot 12 \AA$ above the best least-squares plane, while $\mathrm{C}(2)$ and $\mathrm{C}(4)$ are $0.11 \AA$ below the plane, and in the other P and $\mathrm{C}(3)$ are 0.11 and $0.16 \AA$ below, while $C(2)$ and $C(4)$ are $0 \cdot 13$ and $0 \cdot 14 \AA$ above the plane. In 2,3,4-trimethylpentane-2,4phosphinic acid monohydrate the departure from
planarity is the same. ${ }^{2}$ The dihedral angles between $\mathrm{P}-\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{P}-\mathrm{C}(4)-\mathrm{C}(3)$ are 19.7 and $24 \cdot 8^{\circ}$ respectively and the dihedral angles between $\mathrm{C}(10)-\mathrm{P}-\mathrm{O}(16)$, and $\mathrm{C}(2)-\mathrm{P}-\mathrm{C}(4)$, are $91 \cdot 1$ and $90 \cdot 8^{\circ}$ respectively for the two molecules. In both molecules the methyl group at $\mathrm{C}(3)$ is cis to the phenyl ring.
(Received, July 12th, 1968; Com. 939.)

[^1]
[^0]: \dagger Crystals were supplied bp Dr. Cremer, Illinois Institute of Chemical Technology, Chicago.

[^1]: ${ }^{1}$ S. E. Cremer and R. J. Chorvat, J. Org. Chem., 1967, 32, 4066; S. E. Cremer and R. J. Chorvat, Tetrahedron Letters. 1968, 4, 413.
 ${ }^{2}$ D. D. Swank and C. N. Caughlan, Chem. Comm., 1968, 1051.

