Isolation of 3-Methoxyfisetin from Acacia mearnsii

By S. E. DREWES* and A. H. ILSLEY

(Leather Industries Research Institute, Rhodes University, Grahamstown, South Africa)

RE-EXAMINATION of the water-insoluble fraction of black wattle (*Acacia mearnsii*) heartwood extract has led to the isolation of a new naturally occurring derivative of fisetin, 3-methoxyfisetin (I). On two-dimensional paper chromatograms [butan-2-ol saturated with water and 2% (v/v) acetic acid] the compound partly underlies fisetin but it is readily detected by its bright blue fluorescence under u.v. light.

The compound, $C_{16}H_{12}O_6$, m.p. 268—270°, crystallised from ethanol-water as needles and was obtained pure by repeated preparative paper chromatography. With the Mg-HCl reagent, the

compound gave a typical cherry-red colour¹ while with ammoniacal silver nitrate a black, after transient yellow (due to ammonia), colour was obtained. The i.r. spectrum showed carbonyl absorption at 1607 cm.⁻¹. The main peak in the u.v. spectrum at 350 m μ was unaffected by the addition of aluminium chloride but underwent a bathochromic shift of 13 m μ with boric acid-sodium acetate.² Fusion with potassium hydroxide yielded protocatechuic acid and β -resorcylic acid and this, together with the evidence above, suggested a flavonol with free phenolic groups at the 3'-,4'-, and 7-positions and methoxy-substitution at C-3.

CHEMICAL COMMUNICATIONS, 1968

Acetylation with acetic anhydride-pyridine yielded the 3',4',7-triacetoxy-3-methoxy-derivative as white prisms (m.p. 145—147°) from methanol. In the n.m.r. spectrum of this derivative, the 3-methoxy-single is centred at τ 6.07. In agreement with earlier findings the proton at C-5 is strongly deshielded (τ 1.75) by the carbonyl group at C-4.4 Mass spectrometry gave M^+ 426 for this derivative.

Methylation of the free phenolic form with diazomethane gave the tetramethyl ether $(M^+ 342,$

by mass spectrometry) as elongated prisms, m.p. 152°. A mixed m.p. with authentic tetra-O-methylfisetin showed no depression and comparison of the mass and n.m.r. spectra of these two compounds showed complete identity.

Apart from the flavonol glycoside mearnsitrin,⁵ isolated from wattle leaves with a methoxy-group probably in the C-4' position, no other methoxy-lated derivatives have been obtained from wattle. The present isolation of 3-methoxyfisetin is of interest particularly in the light of speculation regarding the biosynthesis of C_{16} flavonoids either through condensation with formaldehyde⁶ or through photochemical oxidative cyclisation.⁷

This work is supported by grants from the South African Council for Scientific and Industrial Research and the African Territories Wattle Industry Fund.

(Received, July 26th, 1968; Com. 1033.)

¹ K. Venkataraman, "The Chemistry of Flavonoid Compounds", Pergamon Press, London, 1962, p. 72.

- ² L. Jurd, Arch. Biochem. Biophys., 1956, 63, 376.
- ³ D. G. Roux, J. Amer. Leather Chemists' Assoc., 1958, 53, 384.

⁴ S. E. Drewes and D. G. Roux, *Biochem. J.*, 1964, **90**, 343.

⁵ A. M. MacKenzie, Tetrahedron Letters, 1967, 2519.

⁶ W. R. Chan, W. G. C. Forsyth, and C. H. Hassall, J. Chem. Soc., 1958, 3174; S. E. Drewes and D. G. Roux, J. Chem. Soc. (C), 1966, 1644.

⁷ A. C. Waiss and J. Corse, J. Amer. Chem. Soc., 1965, 87, 2068; A. C. Waiss, R. E. Lundin, A. Lee, and J. Corse, *ibid.* 1967, 89, 6213.