The Energy of the O–F Bond in Trifluoromethyl Hypofluorite

By J. CZARNOWSKI, E. CASTELLANO, and H. J. SCHUMACHER*

(Instituto de Investigaciones, Universidad de La Plata, Argentina)

CADY,¹ by using the heat of formation of CF_3OF from its gaseous atoms and making certain assumptions for the C-F and C-O bond energies, obtained for the O-F bond-energy an estimated value of 47 kcal. By studying the kinetics of the thermal decomposition of CF_3OF in the presence of SO₃, we were able to determine this value exactly.

No direct reaction occurred between the two molecules. The CF₃OF decomposes in a unimolecular reaction, forming CF₃O radicals and F atoms. The F atoms reacted rapidly with SO₃, giving FSO₃ (in equilibrium with its dimer, $F_2S_2O_6$); the CF₃O radicals reacted with FSO₃, forming CF₃O·O·SO₂F, or with another CF₃O radical, forming the peroxide (CF₃O)₂.

At temperatures above 250° , decomposition reactions, which led to the formation of SO_2F_2 , O_2 , and COF_2 , could be observed. However, at lower temperatures these reactions were too slow to affect the results.

With sufficiently high concentrations of FSO₃, which could be obtained by adding a certain amount of $F_2S_2O_6$ before the reaction, the formation of $(CF_3O)_2$ could be almost completely suppressed. At 200–230°, with SO₃ pressures from 10 to 70 torr and CF₃OF pressures from 50 to 600 torr, 20–40 torr of $F_2S_2O_6$ were needed. The only product formed under these conditions was CF₃O·O·SO₂F (>97%). We were therefore able to determine the specific rate constants for the unimolecular decomposition of CF₃OF with high accuracy by simple pressure measurements.

$$CF_3OF \rightarrow CF_3O + F$$
 (rate determining
step) (1)

$$F + SO_3 \rightarrow FSO_3 \text{ (fast)}$$
(2)
2 FSO_3 \rightleftharpoons F_2S_2O_6 (2)

$$[CF_{3}O + CF_{3}O \rightarrow CF_{3}O \cdot OCF_{3}]$$
(3)

$$CF_3O + FSO_3 \rightarrow CF_3O \cdot O \cdot SO_2F$$
 (4)

for
$$[FSO_3] > [CF_3O]$$
:
- $d[CF_3OF]/dt = d[CF_3O \cdot O \cdot SO_2F]/dt$
= $k_1[CF_3OF]$

In this pressure range the rate constants are weakly pressure dependent. By extrapolation to infinite pressure the values of $k_{1\infty}$ at 200, 220, and 230° were obtained. From the temperature coefficient of $k_{1\infty}$, the heat of activation, that is, the energy of dissociation of the O-F bond was calculated:

$$k_{1\infty} = 2.5 \times 10^{14} \exp\left(-\frac{43,500 \pm 500}{RT}
ight) \operatorname{sec.}^{-1} D_{CF_{2}O-F} = 43.5 \pm 0.5 \operatorname{kcal.}$$

(Received, August 5th, 1968; Com. 1083.)

¹ R. S. Porter and G. H. Cady, J. Amer. Chem. Soc., 1957, 79, 5628.