Synthesis and X-Ray Structure of the 8,13-Diaza-steroid System

By J. H. BURCKHALTER,* HANLEY N. ABRAMSON, JOHN G. MACCONNELL, and RONALD J. THILL

(Laboratory of Medicinal Chemistry, College of Pharmacy, The University of Michigan, Ann Arbor, Michigan

48104)

and Arthur J. Olson, Jonathan C. Hanson, and C. E. Nordman

(Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48104)

OUR previous Communication¹ reported the first total synthesis *via* (Ia) and (Ib) of the 8,13-diazasteroid system in the form of $\Delta^{8}(^{14})$ -immonium salts [(IIa) and (IIb)]. Subsequent work has resulted in the conversion of these immonium salts to the 8,13-diaza-18-noroestrone methyl ethers [(IVa) and (IVb)] by reductive procedures using sodium borohydride or PtO₂.

By a one-step reductive cyclization of (Ia), indicated earlier as our objective,² Taylor and Lenard recently prepared (IVa) by means of PtO₂-reduction in ethanol.³ The (IVa) obtained by this method proved to be identical with that prepared from the immonium salt (IIa).[†] We have found that sodium borohydride will also reductively cyclize (Ia) to (IVa).

With PtO_2 catalyst in ethanol, the unsubstituted compound (IVd) was prepared as the HCl salt (m.p. 269–273°, decomp.), as was the 3-benzyl ether (IVc) (m.p. 174–176°). 8,13-Diaza-18-noroestrone (IVe), the analogue of oestrone

itself, was readily obtained from the benzyl ethers [(Ic) or (IVc)] with Pd-C in ethanol (m.p. 230–232°, decomp.). Reduction of the lactams [(IVa) and (IVb)] was readily accomplished with an excess of lithium aluminium hydride to give the cyclic gem-diamines (IIIa) and (IIIb) (m.p. 123–124° and 77–79°, respectively).

The structures of (IV) have been uncertain, particularly the configuration at positions 9 and 14. Hence an X-ray crystal structure determination of (IVa) was undertaken. The compound crystallizes in space group $P2_1/n$ with cell parameters a = 7.531, b = 29.917, c = 7.637 Å, $\beta = 116.9^{\circ}$, and Z = 4. A total of 2154 measurable reflections were recorded on a Supper-Dates diffractometer. The structure has been refined to R = 0.068. The result, shown as an ORTEP drawing⁴ in the Figure, agrees with structure (IVa). The hydrogens at positions 9 and 14 are both α . The overall molecular structure is similar to that of 4-bromooestrone⁵ except for the following differences: the

† Taylor and Lenard (ref. 2) report m.p. $166-167^{\circ}$ for the dimethyl ether (IVa). We found a higher m.p., $171-172^{\circ}$.

FIGURE. ORTEP drawing of the molecule viewed at an angle of 60° from the normal to ring-A. The ellipsoids express the thermal motion of the non-hydrogen atoms.

amide character of atoms C-14, N-13, C-17, C-16, and the oxygen at C-17 is demonstrated by the fact that they are nearly coplanar and their bond angles and bond distances agree with those found in amide groups. The D-ring has a β -envelope configuration with C-15 0.34 Å above the plane defined by the other D-ring atoms as compared with the α envelope configuration with C-14 below the D-ring plane found in 4-bromo-oestrone. The c-ring is a slightly distorted chair form with C-9 0.71 Å below and N-13 0.53 Å above a least-square plane through The B-ring, which C-14, N-8, C-12, C-11. approaches the half-chair configuration, differs from 4-bromo-oestrone, which is in an envelope configuration.

This work was supported by the National Institutes of Health and the Eli Lilly Foundation.

(Received, July 31st, 1968; Com. 1043.)

¹ J. H. Burckhalter and H. N. Abramson, Chem. Comm., 1966, 805.

² H. N. Abramson, Ph.D. Thesis, The University of Michigan, Ann Arbor, Michigan, U.S., 1966; H. N. Abramson and J. H. Burckhalter, Abstracts of Papers presented at the 152nd Meeting, American Chemical Society, New York, Sept. 12-15, 1966, p. 43. ³ E. C. Taylor and K. Lenard, *Chem. Comm.*, 1967, 97.

⁴ C. K. Johnson, "ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations", Oak Ridge National Laboratory, Report ORNL-3794.

⁵ D. A. Norton, G. Kartha, and C. T. Lu, Acta Cryst., 1963, 16, 89.