The Crystal Structures of Bis(tricarbonyltributylphosphinecobalt) and Bis(tricarbonyltriethylphosphinecobalt)mercury

By R. F. Bryan* and A. R. Manning
(Department of Chemistry, The University of Virginia, Charlottesville, Virginia 22901)

We report the crystal structures, obtained by X-ray diffraction methods, of two cobalt carbonyls containing unbridged metal-metal bonds.

Bis(tricarbonyltributylphosphinecobalt) crystallises from methanol as thin red-brown plates. \dagger The space group is $P 2_{1} / c, a=11 \cdot 23, b=13 \cdot 14$, $c=15 \cdot 89 \AA, \beta=125^{\circ} 50^{\prime}, Z=2$. The molecules have a centre of symmetry imposed by crystallographic requirement. Measurement of 820 independent reflections significantly above background was performed with a single crystal mounted so as to rotate about a^{*} on a Hilger Watts linear diffractometer. Mo- K_{α} radiation was used with balanced filters.

Bis(tricarbonyltriethylphosphinecobalt)mercury gives brown prisms from benzene-hexane; $a=7 \cdot 32$, $b=14 \cdot 24, c=14.94 \AA, \beta=123^{\circ} 10^{\prime}, P 2_{1} / c$, and $Z=2$ with molecular centrosymmetry again implied. Measurement of 1030 reflections was performed as before from a crystal set to rotate about b^{*}.

Both structures were solved by the heavyatom method and refined by Fourier, difference Fourier, and block-diagonal least-squares methods to final values of R of 0.11 and 0.07 respectively. Anisotropic thermal parameters were used for the metal and phosphorus atoms and absorption corrections were applied in the case of the mercury compound.

Bis(tricarbonyltributylphosphinecobalt) has the four atoms $\mathrm{P}-\mathrm{Co}-\mathrm{Co}-\mathrm{P}$ in an almost linear array, $\mathrm{Co}-\mathrm{Co}-\mathrm{P}=178^{\circ}$, and contains an unbridged $\mathrm{Co}-\mathrm{Co}$ bond of length $2 \cdot 67(1) \AA$. Other geometrical parameters of interest are: Co-P $2 \cdot 19(1)$ mean $\mathrm{Co}-\mathrm{C}$ $1 \cdot 77$, mean $\mathrm{C}-\mathrm{O} 1 \cdot 12$, and mean P-C $1.87 \AA$. The average $\mathrm{Co}-\mathrm{Co}-\mathrm{C}$ angle is 86°, acute as in all similar molecules, while the average Co-P-C angle is 112°. Two of the butyl side chains are in a disordered
state and no unique positions can be ascribed to six of the carbon atoms.

The unbridged Co-Co distance may be compared with the values of $2 \cdot 913(6) \AA$ and $2 \cdot 92(1) \AA$ found for the $\mathrm{Mn}-\mathrm{Mn}$ separation in $\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}\right]_{2}{ }^{1}$ and in decacarbonyldimanganese ${ }^{2}$ respectively. Since the substitution of a trans-triethylphosphine group for a carbonyl group in the manganese system clearly has no significant effect upon the metalmetal distance and since the replacement of carbonyl by triethylphosphine in the cobaltmercury compound described has no measurable effect upon the metal-metal distance, it is likely that the value of $2 \cdot 67 \AA$ is close to that expected for the unbridged $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2}$ present in solution equilibrium.

In the mercury-containing compound the $\mathrm{Co}-\mathrm{Hg}$ distance is $2 \cdot 499(5) \AA$. This is much shorter than the values of $2.56(1) \AA$ found in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ $\mathrm{HgCo}(\mathrm{CO})_{4},{ }^{3}$ and $2 \cdot 58(1) \AA$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}(\mathrm{CO})_{2}{ }^{-}$ $\mathrm{HgCl}_{2}{ }^{4}$ It is, however, identical with those found in $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{2},{ }^{5} 2 \cdot 499(6)$ and $2 \cdot 496(6) \AA$, showing that the substitution of a trialkylphosphine moiety for a trans-carbonyl group has no measurable effect upon the M-M separations in these homologous symmetrical carbonyls. This is in marked contrast to the situation in heterogeneous systems such as $\mathrm{Sn}-\mathrm{Mn}$ compounds where such a substitution significantly diminishes the metal-metal bond distance. ${ }^{6}$ Other distances of interest in this molecule are in agreement with those found in octacarbonyldicobaltmercury, Co-P $2 \cdot 19(1)$, mean $\mathrm{Co}-\mathrm{C} 1.73$, and mean C-O $1 \cdot 19 \AA$. The mean $\mathrm{Hg}-\mathrm{Co}-\mathrm{C}$ angle is 86° as compared to 82° in that compound.
(Received, August 12th, 1968; Com. 1113.)

[^0]${ }^{1}$ M. J. Bennett and R. Mason, J. Chem. Soc. (A), 1967, 75.
${ }^{2}$ L. F. Dahl and R. E. Rundle, Acta Cryst., 1963, 16, 419.
${ }^{3}$ R. F. Bryan and H. P. Weber, Acta Cryst., 1966, 22, Al45.
${ }^{4}$ I. N. Nowell and D. R. Russell, Chem. Comm., 1967, 817.
${ }^{5}$ G. M. Sheldrick and R. N. F. Simpson, Chem. Comm., 1967, 1015.
${ }^{6}$ R. F. Bryan and H. P. Weber, Acta Cryst., 1967, 22, 822; R. F. Bryan, J. Chem. Soc. (A), 1967, 172.

[^0]: \dagger Professor James Ibers informs us that he has determined the crystal structure of $\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{PBu}_{3}\right]_{2}$ in a cubic modification crystallised from iso-octane. He found the Co-Co distance $=2 \cdot 66(1) \AA$ with other geometrical parameters in agreement with our results. However, his molecule possesses $D_{\mathrm{s} d}$ symmetry whereas in our case the symmetry is $\overline{\mathrm{I}}$. This difference in crystal morphology is no doubt due to the disorder of the butyl groups in our own case as opposed to the other where they are ordered. We thank Professor Ibers for permission to quote his results in advance of publication (J. Organometallic Chem., 1968, in the press).

