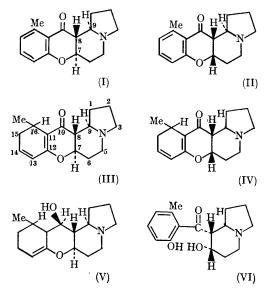
## Three New Indolizidine Alkaloids Related to Elaeocarpine and Isoelaeocarpine

By S. R. JOHNS, J. A. LAMBERTON, and A. A. SIOUMIS

## (Division of Applied Chemistry, C.S.I.R.O., Chemical Research Laboratories, Melbourne, Australia)

Two new alkaloids isolated from the leaves of *Elaeocarpus dolichostylis* Schl. bear a close relationship to the alkaloids  $(\pm)$ -elaeocarpine (I) and  $(\pm)$ -isoelaeocarpine (II) previously obtained from *Elaeocarpus polydactylus* Schl.<sup>1</sup> The isomeric alkaloids (+)-elaeocarpiline and (-)-isoelaeocarpiline which have the molecular formula  $C_{16}H_{21}NO_2$  are shown to be (+)-15,16-dihydroelaeocarpine (III) and (-)-15,16-dihydroelaeocarpine (IV), in which the relative stereochemistry at C-16 and the absolute configuration remain unassigned.

(+)-Elaeocarpiline (III), m.p. 165—166°,  $[\alpha]_{\rm D}$ + 395° (CHCl<sub>3</sub>),  $M^+$  at m/e 259, has  $\lambda_{\rm max}$  (EtOH) 221, 241 infl, and 323 m $\mu$  ( $\epsilon$  5000, 4600, and 7200), and  $\nu_{\rm max}$  (CCl<sub>4</sub>) 1657 cm.<sup>-1</sup> typical of a conjugated dienone system. The n.m.r. spectrum\* has signals at  $\delta$  0.95 (3H, d, J 6.7 c./sec., assigned to the methyl group at C-16), 6.27 (m, 14-H), and  $\delta$  5.85 (q, 13-H, showing a large vicinal and a small allylic coupling  $J_{vlc}$  10.0 c./sec.,  $J_{all}$  2.9 c./sec.). A broad multiplet at  $\delta$  4.06 (7-H) is similar to the signal observed for the 7-H in the spectrum of ( $\pm$ )-elaeocarpine (I), which was shown to be consistent with a *trans*-diaxial configuration for the C-7 and C-8 protons.<sup>1</sup> Chemical proof of the relationship of (+)-elaeocarpiline (III) to ( $\pm$ )elaeocarpine (I) was obtained by heating (III) with palladium-charcoal (10%) in benzene, as this reaction affords as a major product (+)-elaeocarpine, m.p. 104—106°,  $[\alpha]_{\rm p}$  + 206° (CHCl<sub>3</sub>),


\* All n.m.r. spectra were measured at 100 Mc./sec. in  $\text{CDCl}_3$  solutions, and chemical shifts are relative to tetra-methylsilane.

identical in its i.r., n.m.r., and mass spectra with  $(\pm)$ -elaeocarpine.

(-)-Isoelaeocarpiline (IV), m.p. 146-147°,  $[\alpha]_{\rm D} - 400^{\circ}$  (CHCl<sub>3</sub>),  $M^+$  259,  $\lambda_{\rm max}$  (EtOH) 224, 7700),  $\nu_{max}$  (CCl\_4) 1657 cm.-1, is isolated from 240 infl, and 323 m $\mu$ , ( $\epsilon$  3700, 3500, and E. dolichostylis in larger amounts than (III). The n.m.r. spectrum of (IV) shows  $\delta$  0.85 (d, 16-Me, J 6.7 c./sec.), 6.26 (m, 14-H), 5.88 (q,13-H, Jvic 10.0, Jall 2.8 c./sec.). A narrow multiplet at  $\delta$  4.54 (7-H) closely resembles the signal for the 7-H in the spectrum of (+)-isoelaeocarpine (II)<sup>1</sup> and indicates a similar cis-7,8 ring junction. Heating (IV) with palladium-charcoal in benzene, gives a mixture of (-)-isoelaeocarpine, a colourless gum,  $[\alpha]_{\rm D} - 120^{\circ}$  (CHCl<sub>3</sub>), picrate m.p. 260-263° (decomp.), identical in its i.r., n.m.r., and mass spectra with  $(\pm)$ -isoelaeocarpine, and a product characterized as (-)-13,14,15,16-tetrahydroisoelaeocarpine, m.p. 121–122°,  $[\alpha]_D - 219^\circ$  (CHCl<sub>3</sub>),  $M^+$  261,  $\lambda_{\rm max}$  (EtOH) 275 m $\mu$ , ( $\epsilon$  8900),  $\nu_{\rm max}$  $(CCl_4)$  1667 cm.<sup>-1</sup>.

With sodium borohydride in ethanol at room temperature the 13,14-double bond of (-)-isoelaeocarpiline (IV) is reduced quantitatively to give (-)-13,14,15,16-tetrahydroisoelaeocarpine, but the carbonyl group is unaffected. (+)-Elaeocarpiline (III), on the other hand, reacts with sodium borohydride under the same conditions to give a tetrahydro-derivative, m.p. 197—198°,  $[\alpha]_{\rm D}$  + 135° (CHCl<sub>3</sub>),  $M^+$  263, which can be shown to be the alcohol (V). Hydrogenation of (III) over platinum oxide in ethyl acetate gives (+)-13,14,15,16-tetrahydroelaeocarpine, m.p. 92—94°,  $[\alpha]_{\rm D}$  + 317° (CHCl<sub>3</sub>),  $\lambda_{\rm max}$  (EtOH) 273 m $\mu$ , ( $\epsilon$  8900),  $\nu_{\rm max}$  (CCl<sub>4</sub>) 1666 cm.<sup>-1</sup>.

A new phenolic alkaloid, isoelaeocarpicine,  $C_{16}H_{21}NO_3$ , m.p. 164—166°,  $[\alpha]_D + 29°$  (CHCl<sub>3</sub>),  $M^+$  275,  $\nu_{max}$  (CHCl<sub>3</sub>) 1665 cm.<sup>-1</sup>,  $\lambda_{max}$  (EtOH) 248 and 294 m $\mu$  ( $\epsilon$  3150 and 2100), is isolated from *E. polydactylus* leaves, together with (I) and (II), from which it differs in molecular composition by H<sub>2</sub>O. Isoelaeocarpicine can be shown to be (VI), for on warming with potassium hydroxide in methanol solution it is converted into a mixture of (I) of low optical rotation  $([\alpha]_D + 20^\circ \text{ in CHCl}_3)$ and (II) which is essentially racemic. The n.m.r. spectrum of (VI) has a signal at  $\delta$  4·30 (7-H), which shows couplings of a similar magnitude to those observed for the 7-H in isoelaeocarpine,<sup>1</sup> and at  $\delta$  3·82 (q.J<sub>7.8</sub> 2·5, J<sub>8.9</sub> 11·0 c./sec.), which is assigned to 8-H. The coupling constants of the C-7 and C-8 protons indicate a *cis* axial-equatorial configuration of these two protons in (VI) and an equatorial conformation for the bulky substituent attached to the indolizidine ring at C-8.



*E. dolichostylis*, like the other species previously examined<sup>1,2</sup> occurs in New Guinea, and its leaves contain in addition to (III) and (IV), the indole alkaloid elaeocarpidine<sup>2</sup> and traces of (I) and (II).

(Received, August 13th, 1968; Com. 1122.)

<sup>1</sup>S. R. Johns, J. A. Lamberton, A. A. Sioumis, and J. A. Wunderlich, Chem. Comm., 1968, 290.

<sup>2</sup> S. R. Johns, J. A. Lamberton, and A. A. Sioumis, Chem. Comm., 1968, 410.